

Introduction

Baroni & Evert

Roadmap

Lexical statistics

Zipf's law

Typical frequency patterns Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook **Counting Words:** Introduction

Marco Baroni & Stefan Evert

Málaga, 7 August 2006

Roadmap

Introduction

Baroni & Evert

Roadmap

Lexical statistics:

Zipf's law

Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook ▶ Introduction and motivation

► LNRE modeling: soft

► LNRE modeling: hard

► Playtime!

► The bad news and outlook

Outline

Introduction

Baroni & Evert

Roadmap

Roadmap

Lexical statistics:

Lexical statistics: the basics

Zipf's law

Typical frequency patterns Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook Zipf's lav

Application

Lexical statistics

Zipf 1949/1961, Baayen 2001, Evert 2005

Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Zipf's law

Typical frequency patterns Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

- Statistical study of distribution of types (words and other units) in texts
- ▶ Different from other categorical data because of extreme richness of types

Basic terminology

Introduction

Baroni & Evert

Roadman

Lexical statistics: the basics

Zipf's law Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morpholog Lexical richness Conclusion and outlook

- ▶ N: sample/corpus size, number of **tokens** in the sample
- ▶ *V*: vocabulary size, number of distinct **types** in the sample
- ▶ V_m : type count of **spectrum element** m, number of types in the sample with token frequency m
- V₁: hapax legomena count, number of types that occur only once in the sample (for hapaxes, Count(types) = Count(tokens))
- ▶ A sample: a b b c a a b a
- ▶ N: 8; V: 3; V₁: 1

zipfR

Rank/frequency profile of Brown corpus

Introduction

Baroni & Evert

Roadman

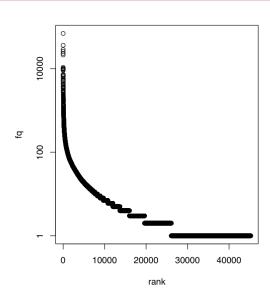
Lexical statistics: the basics

Zipf's law

Typical frequency patterns Zipf's law Consequences

Application

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



Rank/frequency profile

Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Zipf's law

Typical frequency
patterns

Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and

- ▶ The sample: a b b c a a b a d
- ► Frequency list ordered by decreasing frequency

t	f
а	4
b	3
С	1
d	1

► Replace type labels with ranks to obtain rank/frequency profile:

r	f
1	4
2	3
3	1
4	1

► Allows expression of frequency in function of rank of type

Frequency spectrum

Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Zipf's law
Typical frequency

patterns
Zipf's law

Applications

Productivity in morphology
Productivity beyond morphology
Lexical richness
Conclusion and outlook

▶ The sample: a b b c a a b a d

► Frequency classes: 1 (c, d), 3 (b), 4 (a)

► Frequency spectrum:

$$\begin{array}{c|cc}
m & V_m \\
\hline
1 & 2 \\
3 & 1 \\
4 & 1
\end{array}$$

Rank/frequency profiles and frequency spectra

Introduction

Baroni & Evert

Lexical statistics: the basics

Zipf's law Typical frequency patterns

Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Conclusion and

- ► From rank/frequency profile to spectrum: count occurrences of each f in profile to obtain V_f values of corresponding spectrum elements
- ► From spectrum to rank/frequency profile: given highest f (i.e., m) in a spectrum, the ranks 1 to V_f in the corresponding rank/frequency profile will have frequency f, the ranks $V_f + 1$ to $V_f + V_g$ (where g is the second highest frequency in the spectrum) will have frequency g, etc.

Frequency spectrum of Brown corpus

Introduction

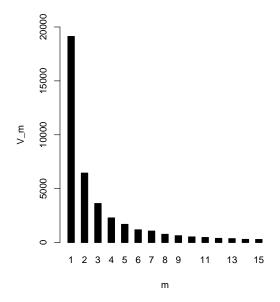
Baroni & Evert

Roadmap

Lexical statistics: the basics

Typical frequency patterns Zipf's law

Productivity in morphology Productivity Conclusion and



Introduction

Baroni & Evert

Lexical statistics: the basics

Zipf's law

Typical frequency Zipf's law Consequences

Productivity in morphology Productivity beyond morphology Conclusion and outlook

Vocabulary growth curve

▶ The sample: a b b c a a b a

▶ N: 1, V: 1, V₁: 1

► N: 3, V: 2, V₁: 1

▶ N: 5, V: 3, V₁: 1

▶ N: 8, V: 3, V₁: 1

▶ (Most VGCs on our slides smoothed with binomial interpolation)

Vocabulary growth curve of Brown corpus With V_1 growth in red

Introduction

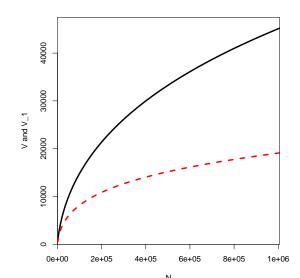
Baroni & Evert

Roadmap

Lexical statistics: the basics

Typical frequency Zipf's law

morphology Productivity beyond morphology Conclusion and outlook



Outline

Introduction

Baroni & Evert

Roadmap

Zipf's law Typical frequency

patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

Zipf's law

Productivity in morphology beyond morphology Conclusion and outlook

Typical frequency patterns Top and bottom ranks in the Brown corpus

Introduction

ZipfR

Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law

Applications

Productivity Lexical richness

top frequencies			bottom frequencies		
rank	fq	word	rank range	fq	randomly selected examples
1	62642	the	7967-8522	10	recordings undergone privileges
2	35971	of	8523-9236	9	Leonard indulge creativity
3	27831	and	9237-10042	8	unnatural Lolotte authenticity
4	25608	to	10043-11185	7	diffraction Augusta postpone
5	21883	a	11186-12510	6	uniformly throttle agglutinin
6	19474	in	12511-14369	5	Bud Councilman immoral
7	10292	that	14370-16938	4	verification gleamed groin
8	10026	is	16939-21076	3	Princes nonspecifically Arger
9	9887	was	21077-28701	2	blitz pertinence arson
10	8811	for	28702-53076	1	Salaries Evensen parentheses

Typical frequency patterns

Introduction

Baroni & Evert

Roadmap

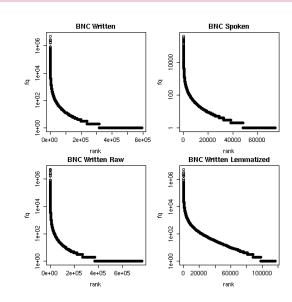
Zipf's law

Typical frequency

Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Conclusion and outlook



Typical frequency patterns Other corpora

Introduction

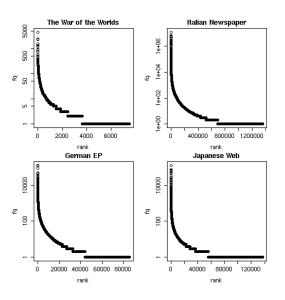
Baroni & Evert

Roadmap

Typical frequency Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



Typical frequency patterns

Brown bigrams and trigrams

Introduction

Baroni & Evert

Roadman

Lexical statistics the basics

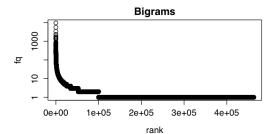
Zipf's law

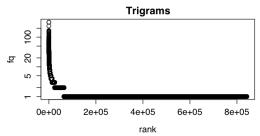
Typical frequency patterns

Zipf's law

Applications

Productivity in morphology Productivity beyond morpholog Lexical richness Conclusion and





Introduction

Baroni & Evert

Levical statistic

the basics

Zipf's law Typical frequency patterns

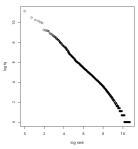
Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

Zipf's law

- ► Language after language, corpus after corpus, linguistic type after linguistic type...
- ▶ same "few giants, many dwarves" pattern is encountered
- ► Similarity of plots suggests that relation between rank and frequency could be captured by a law
- ▶ Nature of relation becomes clearer if we plot log *f* in function of log *r*



Typical frequency patterns

The Italian prefix ri- in the la Repubblica corpus

Introduction

Baroni & Evert

Roadmap

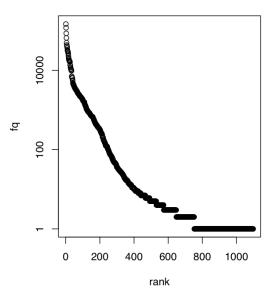
Lexical statistics:

Zipf's law Typical frequency patterns

Zipf's law Consequence

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and



Introduction

Baroni & Evert

Roadmap

Lexical statistics:

Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

Zipf's law

- ► Straight line in double-logarithmic space corresponds to **power law** for original variables
- ▶ This leads to Zipf's (1949, 1965) famous law:

$$f(w) = \frac{C}{r(w)^a}$$

- ▶ With a = 1 and C = 60,000, Zipf's law predicts that most frequent word has frequency 60,000; second most frequent word has frequency 30,000; third word has frequency 20,000...
- ▶ and long tail of 80,000 words with frequency between 1.5 and 0.5

Zipf's law Logarithmic version

Introduction

Baroni & Evert

Roadman

Lexical statistics

Zipf's law Typical frequency

patterns

Zipf's law

Applications

Productivity in morphology Productivity beyond morpholo Lexical richness Conclusion and outlook ► Zipf's power law:

$$f(w) = \frac{C}{r(w)^a}$$

▶ If we take logarithm of both sides, we obtain:

$$\log f(w) = \log C - a \log r(w)$$

- ▶ I.e., Zipf's law predicts that rank/frequency profiles are straight lines in double logarithmic space, which, we saw, is a reasonable approximation
- ▶ Best fit a and C can be found with least squares method
- ▶ Provides intuitive interpretation of *a* and *C*:
 - a is slope determining how fast log frequency decreases with log rank
 - ▶ log *C* is **intercept**, i.e., predicted log frequency of word with rank 1 (log rank 0), i.e., most frequent word

Introduction

Baroni & Evert

Roadman

Lexical statistic the basics

Zipf's law

Typical frequency patterns Zipf's law

Consequence

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

Fit of Zipf's law

- ► At right edge (low frequencies):
 - "Bell-bottom" pattern expected as we are fitting continuous model to discrete frequencies
 - ► More worryingly, in large corpora frequency drops more rapidly than predicted by Zipf's law
- ► At left edge (high frequencies):
 - $\hbox{\bf Highest frequencies lower than predicted} \rightarrow \hbox{\bf Mandelbrot's} \\ \hbox{\bf correction}$

Zipf's law Fitting the Brown rank/frequency profile

Introduction

Baroni & Evert

Roadma

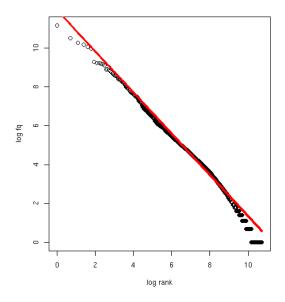
Lexical statistics:

Zipf's law Typical frequency

Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and



Zipf-Mandelbrot's law Mandelbrot 1953

Introduction

Baroni & Evert

Lexical statistics: the basics

Typical frequency

Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook ► Mandelbrot's extra parameter:

$$f(w) = \frac{C}{(r(w) + b)^a}$$

- ▶ Zipf's law is special case with b = 0
- ▶ Assuming a = 1, C = 60,000, b = 1:
 - For word with rank 1, Zipf's law predicts frequency of 60,000; Mandelbrot's variation predicts frequency of 30,000
 - For word with rank 1,000, Zipf's law predicts frequency of 60; Mandelbrot's variation predicts frequency of 59.94
- ► No longer a straight line in double logarithmic space; finding best fit harder than least squares
- ► Zipf-Mandelbrot's law is basis of LNRE statistical models we will introduce

Mandelbrot's adjustment Fitting the Brown rank/frequency profile

Introduction

Baroni & Evert

Roadman

Lexical statistic the basics

Zipf's law

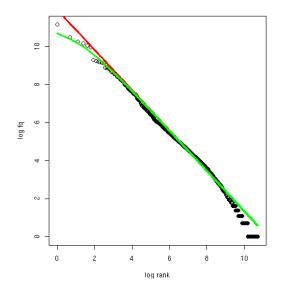
Typical frequency patterns

Zipf's law

Consequence

Applications
Productivity in morphology
Productivity

Productivity beyond morpholo Lexical richness Conclusion and outlook



A few mildly interesting things about Zipf(-Mandelbrot)'s law

Introduction

Baroni & Evert

....

Lexical statistics the basics

Zipf's law Typical frequency

Zipf's law Consequences

Application

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook ▶ a is often close to 1 for word frequency distributions (hence simplified version: f = C/r, and -1 slope in log-log space)

► Zipf's law also provides good fit to frequency spectra

► Monkey languages display Zipf's law (intuition: few short words have very high chances to be generated; long tail of highly unlikely long words)

► Zipf's law is everywhere (Li 2002)

More fits

Introduction

Baroni & Evert

Roadmap

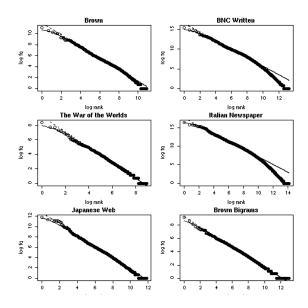
_exical statistics:

Zipf's law Typical frequency patterns

Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and



Consequences

Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Typical frequency patterns Zipf's law Consequences

Application

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

▶ Data sparseness

- ► Standard statistics, normal approximation not appropriate for lexical type distributions
- ▶ *V* is not stable, will grow with sample size, we need special methods to estimate *V* and related quantities at arbitrary sizes (including *V* of whole type population)

V, sample size and the Zipfian distribution

Introduction

Baroni & Evert

Roadmap

Zipf's law

Typical frequency patterns Zipf's law

Consequences Applications

Productivity in morphology Productivity beyond morphology outlook

- ► Significant tail of hapax legomena indicates that chances of encountering new type if we keep sampling are high
- ► Zipfian distribution implies vocabulary curve that is still growing at largest sample size

Pronouns in Italian (la Repubblica) Rank/frequency profile

Introduction

Baroni & Evert

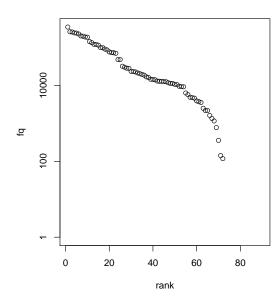
Roadmap

Typical frequency patterns Zipf's law

Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



Pronouns in Italian

Frequency spectrum

Introduction

Baroni & Evert

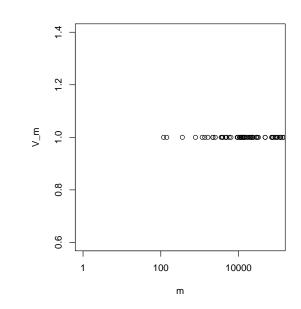
Roadmap

Zipf's law

Typical frequency Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Conclusion and outlook



Pronouns in Italian Vocabulary growth curve

Introduction

Baroni & Evert

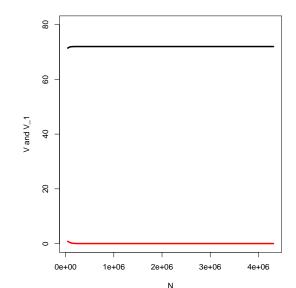
Roadmap

Typical frequency patterns

Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Conclusion and outlook



Pronouns in Italian

Vocabulary growth curve (zooming in)

Introduction

Baroni & Evert

Roadmap

Lexical statistic

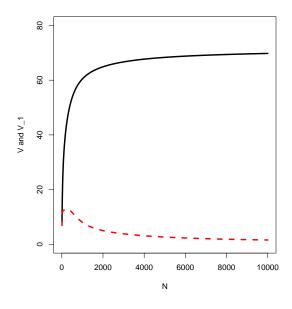
Zipf's law

Typical frequency patterns Zipf's law

Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



ri- in Italian (la Repubblica) Rank/frequency profile

Introduction

Baroni & Evert

Roadmap

Lexical statistic

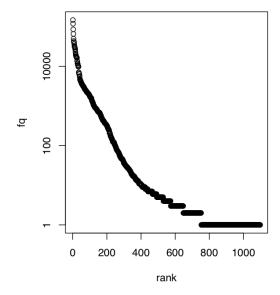
Zinf's la

Typical frequency patterns

Zipf's law Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



ri- in Italian Frequency spectrum

Introduction

Baroni & Evert

Roadmap

Lexical statistics

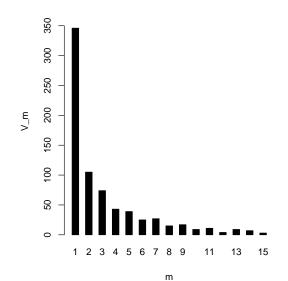
Zipf's law

Typical frequency patterns Zipf's law

Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



ri- in Italian Vocabulary growth curve

Introduction

Baroni & Evert

Roadmap

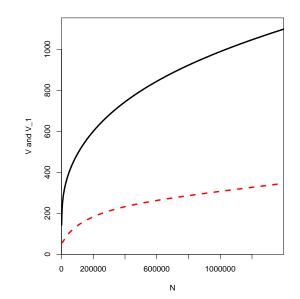
Lexical statistics:

Typical frequency patterns Zipf's law

Consequences

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



Outline

Introduction

Baroni & Evert

Zipf's law Typical frequency

patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Conclusion and outlook

Applications

Productivity

Introduction

Baroni & Evert

Zipf's law

Typical frequency Zipf's law Consequences

Productivity in morphology

Productivity beyond morphology Conclusion and outlook

- ▶ In many linguistic problems, rate of growth of VGC is interesting issue in itself
- ▶ Baayen (1989 and later) makes link between linguistic notion of productivity and vocabulary growth rate

Applications

Introduction

Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Conclusion and

- Productivity (in morphology and elsewhere)
- ► Lexical richness (in stylometry, language acquisition/pathology and elsewhere)
- ► Extrapolation of type counts and type frequency distribution for practical NLP purposes (e.g., estimating proportion of OOV words, typos, etc.)
- ▶ ... (e.g., Good-Turing smoothing, prior distribution for Bayesian language modeling)

Productivity in morphology: the classic definition

Introduction

Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law

Productivity in morphology

Productivity Conclusion and outlook Schultink (1961), translated by Booij

Productivity as morphological phenomenon is the possibility which language users have to form an in principle uncountable number of new words unintentionally, by means of a morphological process which is the basis of the form-meaning correspondence of some words they know.

V as a measure of productivity

Introduction

Baroni & Evert

Roadmap

Lexical statistics

Zipf's law

Typical frequency patterns Zipf's law

Applications

Productivity in

morphology
Productivity
beyond morpholog
Lexical richness
Conclusion and
outlook

- ► Comparable for same *N* only!
- ► Good first approximation, but it is measuring attestedness, not potential:
 - ► (According to rough BNC counts) *de* verbs have *V* of 141, *un* verbs have *V* of 119, contra our intuition
 - ▶ We want productivity index of pronouns to be 0, not 72!

Baayen's ${\mathscr P}$

Introduction

Baroni & Ever

Roadman

Lexical statistic the basics

Zipf's law

Typical frequency patterns Zipf's law Consequences

Application:

Productivity in morphology Productivity beyond morpho

Conclusion and outlook

,

$$\mathscr{P} = \frac{V_1}{N}$$

- ▶ Probability to sample token representing type we will never encounter again (token labeled "hapax") at first stage of sampling (when we are at the beginning of N-token-sample) is given by the proportion of hapaxes in the whole N-token-sample divided by the total number of tokens in the sample
- ► Thus, this must also be probability that *last* token sampled represents new type

Baayen's ${\mathscr P}$

Introduction

Baroni & Evert

Roadmap

Lexical statistics:

Zipf's law Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morpholo Lexical richness Conclusion and

 Operationalize productivity of a process as probability that the next token created by the process that we sample is a new word

- ► This is same as probability that next token in sample is hapax legomenon
- ➤ Thus, we can estimate probability of sampling a new word as relative frequency of hapax legomena in our sample:

$$\mathscr{P} = \frac{V_1}{N}$$

\mathscr{P} as vocabulary growth rate

Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Zipf's law
Typical frequency
patterns
Zipf's law
Consequences

Applications Productivity in

Productivity in morphology Productivity beyond morpholog Lexical richness Conclusion and outlook ▶ 𝒯 measures the potentiality of growth of V in a very literal way, i.e., it is the growth rate of V, the rate at which vocabulary size increases

- ▶ \mathscr{P} is (approximation to) the *derivative* of V at N, i.e., the slope of the tangent to the vocabulary growth curve at N (Baayen 2001, pp. 49-50)
- ▶ Again, "rate of growth" of vocabulary generated by word formation process seems good match for intuition about productivity of word formation process

ri- in Italian la Repubblica corpus

Introduction

Baroni & Evert

Roadmap

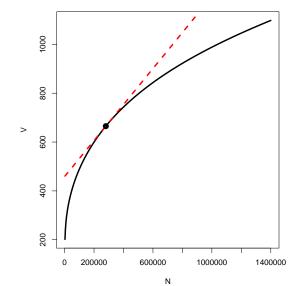
Zipf's law

Typical frequency patterns Zipf's law Consequences

Applications

Productivity in morphology

beyond morphology Lexical richness Conclusion and outlook



Pronouns in Italian la Repubblica corpus

Introduction

Baroni & Evert

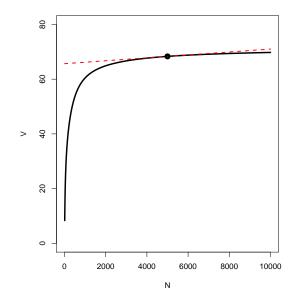
Roadmap

Typical frequency patterns Zipf's law

Applications

Productivity in morphology

beyond morphology Lexical richness Conclusion and outlook



Baayen's $\mathscr P$ and intuition

Introduction

Baroni & Evert

Roadmap

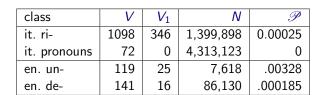
Zipf's law

Typical frequency Zipf's law Consequences

Applications

Productivity in morphology

Productivity beyond morphology Conclusion and outlook



and sample size

Introduction

Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law

Applications

Productivity in morphology

Productivity beyond morphology Conclusion and outlook

▶ We saw that as *N* increases, *V* also increases (for at-least-mildly-productive processes)

► Thus, *V* cannot be compared at different *N*s

V and N English re- and mis-

Introduction

Baroni & Evert

Roadman

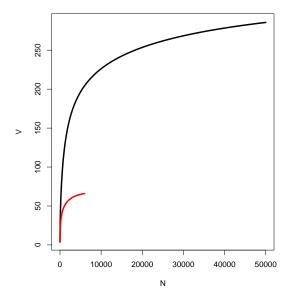
_exical statistic

Zipf's law

Typical frequency patterns Zipf's law

Applications Productivity in

morphology
Productivity
beyond morphology
Lexical richness
Conclusion and



P and sample size

Introduction

Baroni & Evert

Roadmap

Lexical statistics:

Zipf's law Typical frequency patterns Zipf's law

Applications Productivity in

morphology
Productivity
beyond morpho
Lexical richness
Conclusion and

- ► We saw that as *N* increases, *V* also increases (for at-least-mildly-productive processes)
- ► Thus, *V* cannot be compared at different *N*s
- ► However, growth rate is also systematically decreasing as *N* becomes larger
- ► At the beginning, any word will be a hapax legomenon; as sample increases, hapaxes will be increasingly lower proportion of sample
- ► A specific instance of the more general problem of "variable constants" (Tweedie and Baayen 1998) in lexical statistics (cf. type/token ratio)

Growth rate of re- at different sample sizes

Introduction

Baroni & Evert

Roadmap

Lexical statistics

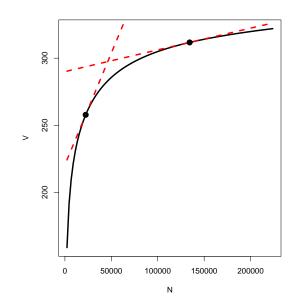
Zipf's law

Typical frequency patterns Zipf's law Consequences

Applications

Productivity in morphology

Productivity beyond morphology Lexical richness Conclusion and outlook



${\mathscr P}$ as a function of ${\it N}$ $({\it re-})$

Introduction

Baroni & Evert

Roadmap

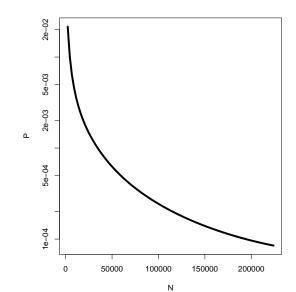
Lexical statist the basics

Zipf's law Typical frequency patterns Zipf's law

Applicatio

Productivity in morphology Productivity

Productivity beyond morphology Lexical richness Conclusion and outlook



V and \mathscr{P} at arbitrary Ns

Introduction

Baroni & Evert

Roadmap

Lexical statistics:

Zipf's law Typical frequency

Typical frequency patterns Zipf's law Consequences

Applications

Productivity in morphology Productivity

Productivity beyond morphology Lexical richness Conclusion and outlook

▶ In order to compare *V* and *𝒜* of processes (and predict how process will develop in larger samples)...

- \blacktriangleright we need to be able to estimate V and V_1 at arbitrary Ns
- ▶ Once we compare \mathscr{P} at same N, we might as well compare V_1 directly (since $\mathscr{P} = V_1/N$ and N will be constant across compared processes)
- ▶ Most intuitive: VGC plot comparison

Productivity beyond morphology

Introduction

Baroni & Evert

Roadmap

Lexical statistics:

Zipf's law Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and

- ► Measuring generative potential of process/category not limited to morphology
- ► Applications in lexicology, collocation and idiom studies, morphosyntax, syntax, language technology
- ► E.g., measure growth of nouns, adjectives, loanwords, relative productivity of two constructions, growth of UNKNOWN lemmas as dataset increases...
- ► An example: measuring productivity of NP and PP expansions in German TIGER treebank

TIGER expansions

Introduction

Baroni & Evert

Roadmap

Lexical statistic

Zipf's law

Typical frequency patterns Zipf's law Consequences

Application

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

► Types are non-terminal rewrite rules for NP and PP, e.g.

- $ightharpoonup \ \mathsf{NP} \
 ightarrow \ \mathsf{ART} \ \mathsf{ADJA} \ \mathsf{NN}$
- ▶ PP → APPR ART NN
- ► Frequency of occurrence of expansions collected from about 900,000 tokens (50,000 sentences) of German newspaper text from Frankfurter Rundschau
- ▶ http://www.ims.uni-stuttgart.de/projekte/TIGER

NP spectrum

Introduction

Baroni & Evert

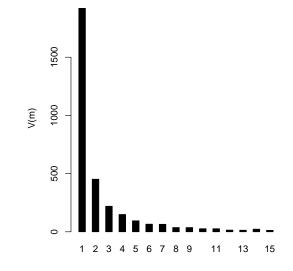
Roadmap

Lexical statist the basics

Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook



PP spectrum

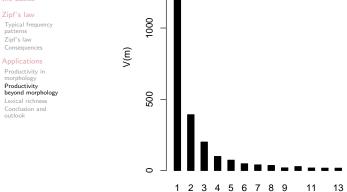
1500

Introduction

Baroni & Evert

Typical frequency patterns Zipf's law

Productivity beyond morphology



Lexical richness

Introduction

Baroni & Evert

Zipf's law

Typical frequency Zipf's law Consequences

Productivity in Productivity beyond morphology Lexical richness

▶ How many words did Shakespeare know? Are the later Harry Potters more lexically diverse than the early ones?

m

- ▶ Are advanced learners distinguishable from native speakers in terms of vocabulary richness? How many words do 5-year-old children know?
- ► Can changes in *V* detect the onset of Alzheimer's disease? (Garrard et al. 2005)

Growth curves of NP and PP

Introduction

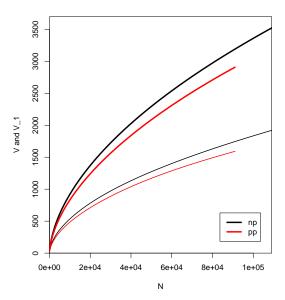
Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law

Applications

Productivity in Productivity beyond morphology Conclusion and



The Dickens' datasets

Introduction

Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law Consequences

morphology Productivity beyond morphology Lexical richness Conclusion and outlook

- ▶ Dickens corpus: collection of 14 works by Dickens, about 2.8 million tokens
- ▶ Oliver Twist: early work (1837-1839), about 160k tokens
- ▶ Great Expectations: later work (1860-1861), considered one of Dickens' masterpieces, about 190k tokens
- ▶ Our Mutual Friend: last completed novel (1864-1865), about 330k tokens

Dickens' V

Introduction

Baroni & Evert

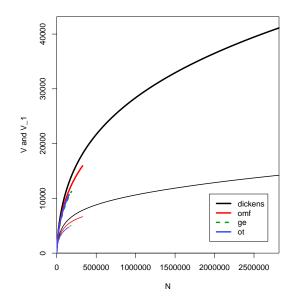
Zipf's law

Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology

Lexical richness Conclusion and outlook



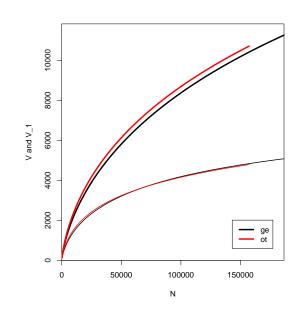
Oliver vs. Great Expectations

Introduction

Baroni & Evert

Typical frequency Zipf's law Consequences

Productivity in Productivity beyond morphology Lexical richness Conclusion and outlook



The novels compared

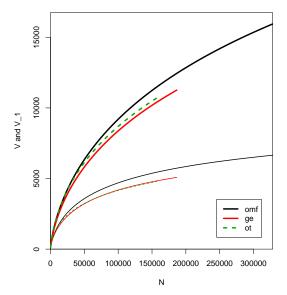
Introduction

Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law

Productivity in morphology Productivity Lexical richness Conclusion and outlook



Conclusion and outlook

Introduction

Baroni & Evert

Roadmap

Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

- ▶ Productivity, lexical richness, extrapolation of type counts for language engineering purposes...
- ▶ all applications require a model of the larger population of types that our sample comes from
- ► Two reasons to construct model of type population distribution:
 - ▶ Population distribution interesting by itself, for theoretical reasons or in NLP applications
 - ▶ We know how to simulate sampling from population; thus once we have population model we can obtain estimates of type-related quantities (e.g., V and V_1) at arbitrary Ns

Modeling the population Productivity

Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Zipf's law Typical frequency

Typical frequency patterns Zipf's law

Applications

Productivity in morphology Productivity beyond morpholog Lexical richness Conclusion and

- ▶ Distribution of types of category of interest necessary to estimate V and V_1 at arbitrary Ns, in order to compare VGCs and \mathscr{P} of different processes
- ► However, type population distribution of word formation process (or other category) might be of interest by itself, as model of a part of the mental lexicon of speaker

Modeling the population Lexical richness

Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Zipf's law
Typical frequency
patterns
Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook ▶ Lexical richness = V of whole population (how many words did Shakespeare know? Was the lexical repertoire of young Dickens smaller than that of old Dickens? How many words do 5-year-old children know?)

- ► Accurate estimate of population *V* would solve "variable constant" problem
- ► Sampling from population, in particular to compute VGC, also of interest

Introduction

Baroni & Evert

Roadmap

Lexical statisti

Zipf's law

Typical frequency patterns Zipf's law Consequences

Application

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

Modeling the population Some NLP applications

- Estimate number (and growth rate) of typos,
 UNKNOWNs (or other target tokens) in larger samples
 → estimate V and V₁ at arbitrary Ns
- ► Estimate proportion of OOV words under assumption that lexicon contains top *n* most frequent types (see zipfR tutorial) → requires estimation of *V* and frequency spectrum at arbitrary *N*s (to find out for how many tokens do the top *n* types account for)
- ightharpoonup Good-Turing estimation, Bayesian priors ightharpoonup require full type population model

Outlook

Introduction

Baroni & Evert

Roadmap

Lexical statistics the basics

Zipf's law
Typical frequency
patterns
Zipf's law

Applications

Productivity in morphology Productivity beyond morphology Lexical richness Conclusion and outlook

- ▶ We need model of type population distribution
- ► We will use Zipf(-Mandelbrot)'s law as starting point to model how population looks like

TO BE CONTINUED