Baron \& Evert The type population
-

Counting Words:

Type-rich populations, samples, and statistical models

Marco Baron \& Stefan Evert

Málaga, 8 August 2006
he population
Type probabilities
Population models LM \& $f \mathrm{M}$
Sampling from
the population
he population
Random samples
Expectation
Expectation
Mini-examp
Parameter
estimation
Trial \& error
Automatic
estimation
A practical
example

Sampling from the population

Parameter estimation

A practical example

Populations \&
samples
samples
Baron \& Evert
The population
Type probabilities
Population models
$\mathrm{ZM} \& \mathrm{ZM}$
Sampling from
Random samples
Random stamp
Expectation
Mini example
Parameter
estimation
estimation
Trial \& error
Automatic
Automatic
estimation
A practical

Why we need the population

There are two reasons why we want to construct a model of the type population distribution:

- Population distribution is interesting by itself, for theoretical reasons or in NLP applications
- We know how to simulate sampling from population \rightarrow once we have a population model, we can obtain estimates of $V(N), V_{1}(N)$ and similar quantities for arbitrary sample sizes N
A third reason:
- The bell-bottom shape of the observed Zipf ranking does not fit Zipf's law (type frequencies must be integers!)
- It is more natural to characterize occurrence probabilities (for which there is no such restriction) by Zipf's law

A population of types

Populations \&
samples
Baroni \& Evert
he population
Type probabilities
Population models
Population mod
$\mathrm{ZM} \& \mathbb{Z M}$
Sampling from
he population
Random sample
Expectation
Mini-example
Parameter
estimation
Trial \& error
Trial \& error
Automatic
Automatic
estimation
A practical

- A type population is characterized by
a) a set of types w_{k}
b) the corresponding occurrence probabilities π_{k}
- The actual "identities" of the types are irrelevant (for word frequency distributions)
- we don't care whether W_{43194} is wormhole or heatwave
- It is customary (and convenient) to arrange types in order of decreasing probability: $\pi_{1} \geq \pi_{2} \geq \pi_{3} \geq \cdots$
- NB: this is usually not the same ordering as in the observed Zipf ranking (we will see examples of this later)

Today's quiz .

Populations \&
samples
,
Baroni \& Evert
The population
Type probabilities
Population models
ZM \& \& Z
Sampling from
the population
the population
Random samples
Expectation
Pr
Parameter
estimation
Trial \& error
Automatic
estimation
A practical
example

Everybody remember what probabilities are?

- $0 \leq \pi_{k} \leq 1$ (for all k)
- $\sum_{k} \pi_{k}=\pi_{1}+\pi_{2}+\pi_{3}+\cdots=1$

The problem with probabilities

Populations \&
samples
samples
Baroni \& Evert

Type probabilities
Population model
ZM \& ZZM
Sampling from
Random samples
Random samp
Expectation
Mini-example
Parameter
estimation
Trial \& error
Automatic
Automatic
estimation
A practical

- We cannot measure these probabilities directly
- In principle, such probabilities can be estimated from a sample (that's what most of statistics is about), e.g.

$$
\pi \approx \frac{f}{n}
$$

- But we cannot reliably estimate thousands or millions of π_{k} 's from any finite sample (just think of all the unseen types that do not occur in the sample)

Populations \&
aroni \& Evert
he population
Type probabilities
Population mod
ZM \& ZM
Sampling from
e population
Random samples
Expectation
Mini-examp
Parameter
estimation
Trial \& error

Automatic
estimation

A practical
example

Today's quiz (cont'd)

And what their interpretation is?

- $\pi_{k}=$ relative frequency of w_{k} in huge body of text
e.g. population $=$ "written English", formalized as all English writing that has ever been published
- also: $\pi_{k}=$ chances that a token drawn at random belongs to type w_{k}
- $\pi_{k}=$ output probability for w_{k} in generative model
- e.g. psycholinguistic model of a human speaker
- $\pi_{k}=$ probability that next word uttered by the speaker belongs to type w_{k} (without knowledge about context and previous words)
- analogous interpretations for other linguistic and non-linguistic phenomena

and its solution

Populations \&
samples
Baroni \& Evert
he population Type probabilities Population mo
$Z M \& Z \mathrm{M}$
Sampling from
e populatio
Random sample
Expectation
Mini-example
Parameter
estimation
estimation
Trial \& error
Trial \& error
Automatic
Attomatic
practica

- We need a model for the population
- This model embodies our hypothesis that the distribution of type probabilities has a certain general shape (more precisely, we speak of a family of models)
- The exact form of the distribution is then determined by a small number of parameters (typically 2 or 3)
- These parameters can be estimated with relative ease

Populations \&
samples Baroni \& Evert The population
Type probabilities Type probabilities
Population models Sampling from the population Random samples
Expectation Expectation
Miniexample Parameter
estimation
Trial \& error Automatic
estimation
A practical
examplea
A practica
example

The parameters of the Zipf-Mandelbrot model

Parameter
estimation
Trial \& error
Automatic
estimation
A practical
example

What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well, across many phenomena and data sets
- Re-phrase the law for type probabilities instead of frequencies:

$$
\pi_{k}:=\frac{C}{(k+b)^{a}}
$$

- Two free parameters: $a>1$ and $b \geq 0$
- C is not a parameter but a normalization constant, needed to ensure that $\sum_{k} \pi_{k}=1$
\Rightarrow the Zipf-Mandelbrot population model

The parameters of the Zipf-Mandelbrot model

The finite Zipf-Mandelbrot model

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Population models
ZM \& \& Z
Sampling from
the population
Expectation
Expectation
Mini-example
Paramete
Trial \& error
Automatic
A practica

Zipf-Mandelbrot population model characterizes an infinite type population: there is no upper bound on k, and the type probabilities π_{k} can become arbitrarily small

- $\pi=10^{-6}$ (once every million words), $\pi=10^{-9}$ (once every billion words), $\pi=10^{-12}$ (once on the entire Internet), $\pi=10^{-100}$ (once in the universe?)
- Alternative: finite (but often very large) number of types in the population
- We call this the population vocabulary size S (and write $S=\infty$ for an infinite type population)

The next steps

Populations \&
samples
Baroni \& Evert

Type probabilities
Population models
ZM \& fZM
Sampling from
the population
the population
Random samp
Expectation
Miniexample
Parameter
estimation
estimation
Trial \& error
Automatic
Automatic
estimation
A practical

Once we have a population model ...

- We still need to estimate the values of its parameters
- we'll see later how we can do this
- We want to simulate random samples from the population described by the model
- basic assumption: real data sets (such as corpora) are random samples from this population
- this allows us to predict vocabulary growth, the number of previously unseen types as more text is added to a corpus, the frequency spectrum of a larger data set, etc.
- it will also allow us to estimate the model parameters

Populations \&
sam
Baroni \& Evert
\qquad
Type probabilities
Population models
M \& fZM
Sampling from
he population
Random sample
Expectation
Mini- example
Parameter
estimation
Trial \& erro

Automatic
aestimation

example

Outline

Populations \&
samples
Baroni \& Evert
he population
Type probabilities
Population mod
ZM \& FM
Sampling from
the population

Random sample
Expectation

Mini-example
Parameter
estimation
estimation
Trial \& erro
Trial \& error
Automatic

Automatic
estimation

A practica

- The finite Zipf-Mandelbrot model simply stops after the first S types $\left(w_{1}, \ldots, w_{S}\right)$
- S becomes a new parameter of the model \rightarrow the finite Zipf-Mandelbrot model has 3 parameters
- NB: C will not have the same value as for the corresponding infinite ZM model

Abbreviations: ZM for Zipf-Mandelbrot model, and $\mathbf{f Z M}$ for finite Zipf-Mandelbrot model

The finite Zipf-Mandelbrot model

The type population

Sampling from the population

Parameter estimation

A practical example

Sampling from a population model

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:

Use computer simulation to sample from this model:

- Draw N tokens from the population such that in each step, type w_{k} has probability π_{k} to be picked

Sampling from a population model

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Population modeds
ZM \& fZM
Sampling from
Random samples
Expectation
Mini-example
Parameter
estimation
Trial \& error
Automatic
A practical

In this way, we can...

- draw samples of arbitrary size N
- the computer can do it efficiently even for large N
- draw as many samples as we need
- compute type frequency lists, frequency spectra and vocabulary growth curves from these samples
- i.e., we can analyze them with the same methods that we have applied to the observed data sets

Here are some results for samples of size $N=1000 \ldots$

Sampling from a population model

Populations \&

Saroni \& Evert
The population
Type porabilities
Population models
ZM \& \&ZM
Sampling from
the population Random samp Expectation
Miniexample Parameter
estimation
Trial \& error estimation
Trial \& error

Automatic | Automatic |
| :--- |
| estimation | A practica

example

\#2:	286	28	23	36	3	4	7	4	8
\#3:	2	11	105	21	11	17	17	1	16
\#4:	44	3	110	34	223	2	25	20	28
\#5:	24	81	54	11	8	61	1	31	35
\#6:	3	65	9	165	5	42	16	20	7
\#7:	10	21	11	60	164	54	18	16	203
\#8:	11	7	147	5	24	19	15	85	37

Samples: type frequency list \& spectrum

Populations \& samples					
Baroni \& Evert	rank r	f_{r}	type k	m	V_{m}
The population	1	37	6	1	83
Type probabilities	2	36	1	2	22
Population models	3	33	3	3	20
Sampling from the population	4	31	7	4	12
Random samples Expectation	5	31	10	5	10
Mini-example	6	30	5	6	5
Parameter estimation	7	28	12	7	5
Trial \& error Automatic	8	27	2	8	3
estimation	9	24	4	9	3
example	10	24	16	10	3
	11	23	8		
	12	22	14	sample \#1	
	:		:		

Samples: type frequency list \& spectrum

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Population models
Type probabilities
Population models
ZM \& ZM
Sampling from
the population Random samples
Expectation Expectation
Mini-example
Parameter
estimation
Trial \& error
Automatic
Autoomatic
estimation
A practical
examplea

rank r	f_{r}	type k	m	V_{m}
1	39	2	1	76
2	34	3	2	27
3	30	5	3	17
4	29	10	4	10
5	28	8	5	6
6	26	1	6	5
7	25	13	8	7
8	24	7	10	3
9	23	6	11	2
10	23	11	\vdots	\vdots
11	20	4		
12	19	17	sample \#2	
\vdots	\vdots	\vdots		

Random variation in type-frequency lists

Populations \&
samples
samples
Baroni \& Evert
The population
Type probabilities
Population models
ZM \& ZZM
Sampling from
Random samples
Random samp
Expectation
Expectation
Miniexample
Parameter
estimation
estimation
Trial \& error
Automatic
Automatic
estimation
A practical

- Random variation leads to different type frequencies f_{k} in every new sample
- particularly obvious when we plot them in population order (bottom row, $k \leftrightarrow f_{k}$)
- Different ordering of types in the Zipf ranking for every new sample
- Zipf rank r in sample \neq population rank k !
- leads to severe problems with statistical methods
- Individual types are irrelevant for our purposes, so let us take a perspective that abstracts away from them
- frequency spectrum
- vocabulary growth curve
\Rightarrow considerable amount of random variation still visible

Random variation in type-frequency lists

Random variation: frequency spectrum

 Sample \#3

Sample mi

Expected values

Populations \&
samples Baroni \& Evert The population
Type erobabilities
Ponulatian models Type probabilities
Population models
$Z M Q Z M$ ZM \& ZZM Sampling from
the population the population Random samples Expectation
Mini-example Parameter estimation
Trial \& error Automatic
estimation A practical
example

The expected frequency spectrum

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Population models
$7 M \& 7 M$
ZM \& ZM
Sampling from
the population
Random samp
Expectation
Mini-examp
Parameter
estimation
estimation
Trial \& error
Automatic
estimation
A practical
example

- There is no reason why we should choose a particular sample to make a prediction for the real data - each one is equally likely or unlikely
\Rightarrow Take the average over a large number of samples
- Such averages are called expected values or expectations in statistics (frequentist approach)
- Notation: $\mathrm{E}[V(N)]$ and $\mathrm{E}\left[V_{m}(N)\right]$
- indicates that we are referring to expected values for a sample of size N
- rather than to the specific values V and V_{m} observed in a particular sample or a real-world data set
- Usually we can omit the sample size: $\mathrm{E}[V]$ and $\mathrm{E}\left[V_{m}\right]$

The expected vocabulary growth curve

Great expectations made easy

Confidence intervals for the expected VGC

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Population models
ZM \& fZM
Sampling from
the population
the population
Expectation
Prem
Parameter
estimation
Trial \& error
$\underset{\substack{\text { Automatic } \\ \text { estimation }}}{ }$
$\underset{\substack{\text { A practical } \\ \text { example }}}{ }$

- Fortunately, we don't have to take many thousands of samples to calculate expectations: there is a (relatively simple) mathematical solution $(\rightarrow$ Wednesday)
- This solution also allows us to estimate the amount of random variation \rightarrow variance and confidence intervals
- example: expected VGCs with confidence intervals
- we won't pursue variance any further in this course

A mini-example

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Population models
ZM 2 FZM
Sampling from
the population
Rexpoctation
Mini-example
Parameter
estimation
Trial \& error
Automatic
Automatic
estimation
A practical

- G. K. Zipf claimed that the distribution of English word frequencies follows Zipf's law with $a \approx 1$
- $a \approx 1.5$ seems a more reasonable value when you look at larger text samples than Zipf did
- The most frequent word in English is the with $\pi \approx .06$
- Zipf-Mandelbrot law with $a=1.5$ and $b=7.5$ yields a population model where $\pi_{1} \approx .06$ (by trial \& error)

Populations \&
Populations
samples
Baroni \& Evert
\qquad Population mod

ZM \& FM Sampling from he population Expectation | Expectation |
| :--- |
| lini-examp | Parameter

stimation Trial \& error Automatic
estimation
A practical
examplea
example

A mini-example

Populations \& Baroni \& Evert

- How many different words do we expect to find in a 1-million word text?
- $N=1,000,000 \rightarrow \mathrm{E}[V(N)]=33026.7$
- 95\%-confidence interval: $V(N)=32753.6 \ldots 33299.7$
- How many do we really find?
- Brown corpus: 1 million words of edited American English
- $V=45215 \rightarrow$ ZM model is not quite right
- Physicists (and some mathematicians) are happy as long as they get the order of magnitude right ...
Model was not based on actual data!

Outline

Populations \&
 samples

Baroni \& Evert
The population
Type probabilities
Population models
ZM \& ZM
Sampling from
the population
the population
Random samples
Expectation
Expectation
Mini-example
Parameter
estimation
Trial \& error
Automatic
estimation
A practical
example
The type population

Sampling from the population

Parameter estimation

A practical example

Parameter estimation by trial \& error

samples

Baroni \& Evert
The population
Type probabilities
Population modells
ZM \& ZMM
Sampling from
the population
Random samples
Epectation
Miniexample
Parameter
estimation
Trial \& error
Atumatic
estimation
A practical
example

m

N

Populations \& samples Baroni \& Evert he population Type probabilities
Population models Population mod
ZM \& ZM Sampling from
he population
Random samples Random samm

Expectation | Expectation |
| :---: |
| Minitexamplo | arameter stimation Trial \& error Automatic

estimation practical

Estimating model parameters

- Parameter settings in the mini-example were based on general assumptions (claims from the literature)
- But we also have empirical data on the word frequency distribution of English available (the Brown corpus)
- Choose parameters so that population model matches the empirical distribution as well as possible
- E.g. by trial and error
- guess parameters
- compare model predictions for sample of size N_{0} with observed data (N_{0} tokens)
- based on frequency spectrum or vocabulary growth curve
- change parameters \& repeat until satisfied
- This process is called parameter estimation

Parameter estimation by trial \& error

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Type probabilities
Population models
ZM \& ZM
Sampling from
the population
Random samples
Expectation
Expectation
Miniexample
Parameter
estimation
Trial \& error
Automatic
Automatic
estimation
A practical
example

Parameter estimation by trial \& error

Populations \&
samples
Baroni \& Evert
The population Type probabilities
Population modes ZM \& fZM Sampling from Random samples Expectation
Mini-example
Parameter
estimation
Trial \& error
Automatic
A practical

m

m
N

Populations \& samples

Baroni \& Evert

The population
Type probabilities
Population model Population mod
ZM \& FM Sampling from
the population
Random samples Random samples
Expectation Expectation
Miniexample Parameter Trial \& error
Automatic Automatic
estimation practical
xample

Ziek Parameter estimation by trial \& error
Populations \&
samples
Baroni \& Evert
The population
Typp probabilities
Population models
ZM \& ZM
Sampling from
the population
Random samples
Expectation
Mini-example
Parameter
estimation
Trial \& error
Autiontic
estimation
A practical

A practica
Populations \&
samples
Baroni \& Evert

Type probabilities
Sampling from
Random samples
Expectation
Mini-example
Parameter
Trial \& error
utomatic
example

m

$\begin{array}{llll}6 e+05 & 8 e+05 & 1 e+0\end{array}$

Automatic parameter estimation

Cost functions for parameter estimation

Populations \&

- Cost functions compare expected frequency spectrum $\mathrm{E}\left[V_{m}\left(N_{0}\right)\right]$ with observed spectrum $V_{m}\left(N_{0}\right)$
- Choice $\# 1$: how to weight differences
- absolute values of differences $\sum_{m=1}^{M}\left|V_{m}-\mathrm{E}\left[V_{m}\right]\right|$
mean squared error $\frac{1}{M} \sum_{m=1}^{M}\left(V_{m}-\mathrm{E}\left[V_{m}\right]\right)^{2}$
- chi-squared criterion: scale by estimated variances

Goodness-of-fit

Populations \&
samples
Baroni \& Evert
he population
Type probabilities
Pooulation models
Pop proabition mo
ZM \& FZM
ampling from
the population
Random samples
Expectation
Miniexample
Parameter
estimation
Trial \& error
Automatic
A practica

- Automatic estimation procedure minimizes cost function until no further improvement can be found
- this is a so-called local minimum of the cost function
- not necessarily the global minimum that we want to find
- Key question: is the estimated model good enough?
- In other words: does the model provide a plausible explanation of the observed data as a random sample from the population?
- Can be measured by goodness-of-fit test
- use special tests for such models (Baayen 2001)
- p-value specifies whether model is plausible
- small p-value \rightarrow reject model as explanation for data
\Rightarrow we want to achieve a high p-value
- Typically, we find $p<.001$ - but the models can still be useful for many purposes!

Populations \&
samples
Baroni \& Evert
The population
TType robabilities
Population models
ZM \& ZM
Sampling from
the population
Random samples
Expectation
Expectation
Mini-example
Parameter
estimation
Trial \& error
Automatic
estimation
A practical
example

- We started with $a=1.5$ and $b=7.5$ (general assumptions)

Populations \&
samples
Baroni \& Evert
The population
Type probabilities
Population models
Population model
ZM \& FZM
Sampling from
the population
Random samples
Random samp
Mini-example
Parameter
estimation
estimation
Automatic
estimation
A practical

Mini-example (cont'd)

N

m

Populations \&
samples
The population
TTpe erobabilities
Population modes
ZM \& ZM
Sampling from
he population
Random samples
Expectation
Miniexample
Parameter
estimation
Trial \& error
Attoratic
estimation
practica
practical
xample

Outline

The type population

Sampling from the population

Parameter estimation

A practical example

- Automatic estimation procedure: $a=2.39$ and $b=1968$
- Goodness-of-fit: $p \approx 0$ (but much better than before!)

Results for Oliver Twist

- Goodness-of-fit: $p=3.6 \cdot 10^{-40}$
- but visually, the approximation is very good

