

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Counting Words: Type-rich populations, samples, and statistical models

Marco Baroni & Stefan Evert

Málaga, 8 August 2006

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

The type population

Sampling from the population

Parameter estimation

A practical example

Why we need the population

Populations & samples

Baroni & Evert

The population

Type probabilities

Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example There are two reasons why we want to construct a model of the type population distribution:

- Population distribution is interesting by itself, for theoretical reasons or in NLP applications
- ► We know how to simulate sampling from population → once we have a population model, we can obtain estimates of V(N), V₁(N) and similar quantities for arbitrary sample sizes N

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Why we need the population

Populations & samples

Baroni & Evert

The population

Type probabilities

Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example There are two reasons why we want to construct a model of the type population distribution:

- Population distribution is interesting by itself, for theoretical reasons or in NLP applications
- ► We know how to simulate sampling from population → once we have a population model, we can obtain estimates of V(N), V₁(N) and similar quantities for arbitrary sample sizes N

A third reason:

- The bell-bottom shape of the observed Zipf ranking does not fit Zipf's law (type frequencies must be integers!)
- It is more natural to characterize occurrence probabilities (for which there is no such restriction) by Zipf's law

A population of types

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

A type population is characterized by

- a) a set of **types** w_k
- b) the corresponding occurrence **probabilities** π_k

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

A population of types

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- A type population is characterized by
 - a) a set of **types** w_k
 - b) the corresponding occurrence **probabilities** π_k
- The actual "identities" of the types are irrelevant (for word frequency distributions)
 - ▶ we don't care whether w₄₃₁₉₄ is *wormhole* or *heatwave*

A population of types

Populations & samples

Baroni & Evert

The population

Type probabilities Population models 7M & f7M

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- A type population is characterized by
 - a) a set of **types** w_k
 - b) the corresponding occurrence **probabilities** π_k
- The actual "identities" of the types are irrelevant (for word frequency distributions)
 - ▶ we don't care whether w₄₃₁₉₄ is *wormhole* or *heatwave*
- It is customary (and convenient) to arrange types in order of decreasing probability: π₁ ≥ π₂ ≥ π₃ ≥ · · ·
- NB: this is usually not the same ordering as in the observed Zipf ranking (we will see examples of this later)

イロト 不得 トイヨト イヨト ヨー ろくで

Today's quiz ...

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Everybody remember what probabilities are?

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへの

Today's quiz . . .

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Everybody remember what probabilities are? ▶ 0 ≤ π_k ≤ 1 (for all k)

Today's quiz . . .

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Everybody remember what probabilities are?

- 日本 - 1 日本 - 1 日本 - 1 日本

```
▶ 0 \le \pi_k \le 1 (for all k)
```

$$\sum_{k} \pi_{k} = \pi_{1} + \pi_{2} + \pi_{3} + \dots = 1$$

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

And what their interpretation is?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

And what their interpretation is?

- π_k = relative frequency of w_k in huge body of text
 - e.g. population = "written English", formalized as all English writing that has ever been published

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

► also: π_k = chances that a token drawn at random belongs to type w_k

Populations & samples

Baroni & Evert

The population

Type probabilities Population models 7M & f7M

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

And what their interpretation is?

- π_k = relative frequency of w_k in huge body of text
 - e.g. population = "written English", formalized as all English writing that has ever been published
 - ▶ also: π_k = chances that a token drawn at random belongs to type w_k
- π_k = output probability for w_k in generative model
 - e.g. psycholinguistic model of a human speaker
 - π_k = probability that next word uttered by the speaker belongs to type w_k (without knowledge about context and previous words)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

And what their interpretation is?

- π_k = relative frequency of w_k in huge body of text
 - e.g. population = "written English", formalized as all English writing that has ever been published
 - ▶ also: π_k = chances that a token drawn at random belongs to type w_k
- π_k = output probability for w_k in generative model
 - e.g. psycholinguistic model of a human speaker
 - ► π_k = probability that next word uttered by the speaker belongs to type w_k (without knowledge about context and previous words)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

 analogous interpretations for other linguistic and non-linguistic phenomena

The problem with probabilities ...

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- We cannot measure these probabilities directly
- In principle, such probabilities can be estimated from a sample (that's what most of statistics is about), e.g.

$$\pi \approx \frac{f}{n}$$

The problem with probabilities ...

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- We cannot measure these probabilities directly
- In principle, such probabilities can be estimated from a sample (that's what most of statistics is about), e.g.

$$\pi \approx \frac{f}{n}$$

But we cannot reliably estimate thousands or millions of π_k's from any finite sample (just think of all the unseen types that do not occur in the sample)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Populations & samples

➡ We need a model for the population

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

➡ We need a **model** for the population

 This model embodies our hypothesis that the distribution of type probabilities has a certain general shape (more precisely, we speak of a family of models)

- 日本 - 1 日本 - 日本 - 日本 - 日本

Populations & samples

Baroni & Evert

The population

Type probabilities Population models 7M & f7M

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

➡ We need a **model** for the population

- This model embodies our hypothesis that the distribution of type probabilities has a certain general shape (more precisely, we speak of a family of models)
- The exact form of the distribution is then determined by a small number of parameters (typically 2 or 3)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ

Populations & samples

Baroni & Evert

The population

Type probabilities Population models 7M & f7M

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

➡ We need a **model** for the population

- This model embodies our hypothesis that the distribution of type probabilities has a certain general shape (more precisely, we speak of a family of models)
- The exact form of the distribution is then determined by a small number of parameters (typically 2 or 3)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

► These parameters can be estimated with relative ease

Examples of population models

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

∃ 990

The Zipf-Mandelbrot law as a population model

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example What is the right family of models for lexical frequency distributions?

We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well, across many phenomena and data sets

The Zipf-Mandelbrot law as a population model

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well, across many phenomena and data sets
- Re-phrase the law for type probabilities instead of frequencies:

$$\pi_k := \frac{C}{(k+b)^a}$$

The Zipf-Mandelbrot law as a population model

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well, across many phenomena and data sets
- Re-phrase the law for type probabilities instead of frequencies:

$$\pi_k := \frac{C}{(k+b)^a}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- Two free parameters: a > 1 and $b \ge 0$
- C is not a parameter but a normalization constant, needed to ensure that $\sum_k \pi_k = 1$

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well, across many phenomena and data sets
- Re-phrase the law for type probabilities instead of frequencies:

$$\pi_k := \frac{C}{(k+b)^a}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- Two free parameters: a > 1 and $b \ge 0$
- ► C is not a parameter but a normalization constant, needed to ensure that $\sum_k \pi_k = 1$
- the Zipf-Mandelbrot population model

The parameters of the Zipf-Mandelbrot model

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

k

k

The parameters of the Zipf-Mandelbrot model

Populations & samples

Baroni & Evert

Type probabilities Population models ZM & fZM

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic

A practical

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

 Zipf-Mandelbrot population model characterizes an infinite type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example Zipf-Mandelbrot population model characterizes an infinite type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small

▶ $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-12}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Zipf-Mandelbrot population model characterizes an infinite type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small
- ▶ $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-12}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- Alternative: finite (but often very large) number of types in the population
- ► We call this the population vocabulary size S (and write S = ∞ for an infinite type population)

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

► The finite Zipf-Mandelbrot model simply stops after the first S types (w₁,..., w_S)

- 日本 - 1 日本 - 1 日本 - 1 日本

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- ► The finite Zipf-Mandelbrot model simply stops after the first S types (w₁,..., w_S)
- S becomes a new parameter of the model
 the finite Zipf-Mandelbrot model has 3 parameters

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

▶ NB: *C* will not have the same value as for the corresponding infinite ZM model

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- ► The finite Zipf-Mandelbrot model simply stops after the first S types (w₁,..., w_S)
- S becomes a new parameter of the model
 the finite Zipf-Mandelbrot model has 3 parameters

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

NB: C will not have the same value as for the corresponding infinite ZM model

Abbreviations: **ZM** for **Zipf-Mandelbrot** model, and **fZM** for **finite Zipf-Mandelbrot** model

The next steps

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Once we have a population model ...

▶ We still need to estimate the values of its parameters

イロト 不得下 不良下 不良下

3

we'll see later how we can do this

The next steps

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example Once we have a population model

- We still need to estimate the values of its parameters
 - we'll see later how we can do this
- We want to simulate random samples from the population described by the model
 - basic assumption: real data sets (such as corpora) are random samples from this population

The next steps

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example Once we have a population model ...

- We still need to estimate the values of its parameters
 - we'll see later how we can do this
- We want to simulate random samples from the population described by the model
 - basic assumption: real data sets (such as corpora) are random samples from this population
 - this allows us to predict vocabulary growth, the number of previously unseen types as more text is added to a corpus, the frequency spectrum of a larger data set, etc.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The next steps

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example Once we have a population model ...

- We still need to estimate the values of its parameters
 - we'll see later how we can do this
- We want to simulate random samples from the population described by the model
 - basic assumption: real data sets (such as corpora) are random samples from this population
 - this allows us to predict vocabulary growth, the number of previously unseen types as more text is added to a corpus, the frequency spectrum of a larger data set, etc.

イロト 不得 トイヨト イヨト ヨー ろくで

it will also allow us to estimate the model parameters

Outline

Baroni & Evert

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

he type population

Sampling from the population

イロト 不得 とうき とうとう

э

Parameter estimation

A practical example

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:

イロト 不得下 不同下 不同下

э

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:

Use computer simulation to sample from this model:

Draw N tokens from the population such that in each step, type w_k has probability π_k to be picked

Populations & samples	<i>#</i> 1.	1	40	24	23	108	18	18	18	1	
Baroni & Evert	#1.	T	42	54	25	100	10	40	10	T	
The population Type probabilities Population models ZM & fZM											
Sampling from the population Random samples Expectation Mini-example											
Parameter estimation Trial & error Automatic estimation											
A practical example											

Populations & samples Baroni & Evert	#1:	1 time	42 order	34 room	23 school	108 town	18 course	48 area	18 course	1 time	
The population Type probabilities Population models ZM & fZM											
Sampling from the population Random samples Expectation Mini-example											
Parameter estimation Trial & error Automatic estimation											

A practical example

Populations & samples	<i>#</i> 1·	1	42	34	23	108	18	48	18	1	
Baroni & Evert	<i>#</i>	time	order	room	school	town	course	area	course	course time	
The population Type probabilities Population models ZM & fZM	#2:	286	28	23	36	3	4	7	4	8	
Sampling from the population Random samples Expectation Mini-example											
Parameter estimation Trial & error Automatic estimation											
A practical example											

Populations & samples	<i>#</i> 1·	1	42	34	23	108	18	48	18	1	
Baroni & Evert	#1.	time	order	room	school	town	course	area	course	time	
The population Type probabilities Population models ZM & fZM	#2:	286	28	23	36	3	4	7	4	8	
Sampling from the population Random samples Expectation Mini-example	#3:	2	11	105	21	11	17	17	1	16	
Parameter estimation Trial & error Automatic estimation											

A practical example

Populations & samples	<i>_µ</i> 1.	1	40	24	22	100	10	10	10	1	
Baroni & Evert	#1:	time	42 order	room	23 school	town	course	40 area	course	time	
The population Type probabilities Population models ZM & fZM	#2:	286	28	23	36	3	4	7	4	8	
Sampling from the population	#3:	2	11	105	21	11	17	17	1	16	
Random samples Expectation Mini-example	#4:	44	3	110	34	223	2	25	20	28	
Parameter estimation Trial & error Automatic estimation											
A practical example											

Populations & samples	<i>#</i> 1.	1	10	34	23	108	18	18	18	1	
Baroni & Evert	#1.	time	order i	room	school	town	course	area	course	time	
The population Type probabilities Population models ZM & fZM	#2:	286	28	23	36	3	4	7	4	8	
Sampling from the population	#3:	2	11	105	21	11	17	17	1	16	
Random samples Expectation Mini-example	#4:	44	3	110	34	223	2	25	20	28	
Parameter estimation	#5:	24	81	54	11	8	61	1	31	35	
Trial & error Automatic estimation	#6:	3	65	9	165	5	42	16	20	7	
A practical example	#7 :	10	21	11	60	164	54	18	16	203	
	#8:	11	7	147	5	24	19	15	85	37	
	•	÷	÷	÷	:	:	:	÷	:	÷	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation

Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

In this way, we can . . .

draw samples of arbitrary size N

the computer can do it efficiently even for large N

イロト 不得下 不良下 不良下

-

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples

Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

In this way, we can . . .

- draw samples of arbitrary size N
 - the computer can do it efficiently even for large N

イロト 不得下 不良下 不良下

-

draw as many samples as we need

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example In this way, we can ...

- draw samples of arbitrary size N
 - the computer can do it efficiently even for large N
- draw as many samples as we need
- compute type frequency lists, frequency spectra and vocabulary growth curves from these samples
 - i.e., we can analyze them with the same methods that we have applied to the observed data sets

イロト 不得 トイヨト イヨト ヨー ろくで

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example In this way, we can ...

- draw samples of arbitrary size N
 - the computer can do it efficiently even for large N
- draw as many samples as we need
- compute type frequency lists, frequency spectra and vocabulary growth curves from these samples
 - i.e., we can analyze them with the same methods that we have applied to the observed data sets

イロト 不得 トイヨト イヨト ヨー ろくで

Here are some results for samples of size $N = 1000 \dots$

Samples: type frequency list & spectrum

Populations & samples

Baroni & Evert	rank <i>r</i>	f_r	type <i>k</i>	m	V_m
The population	1	37	6	1	83
Type probabilities	2	36	1	2	22
ZM & fZM	3	33	3	3	20
Sampling from the population	4	31	7	4	12
Random samples	5	31	10	5	10
Mini-example	6	30	5	6	5
Parameter estimation	7	28	12	7	5
Trial & error Automatic	8	27	2	8	3
estimation	9	24	4	9	3
A practical example	10	24	16	10	3
	11	23	8	:	:
	12	22	14		•
	÷	:	÷	sar	nple #1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Samples: type frequency list & spectrum

Populations & samples

Baroni & Evert	rank <i>r</i>	f _r	type <u>k</u>	m	V_m
The population	1	39	2	 1	76
Type probabilities	2	34	3	2	27
ZM & fZM	3	30	5	3	17
Sampling from the population	4	29	10	4	10
Random samples	5	28	8	5	6
Mini-example	6	26	1	6	5
Parameter estimation	7	25	13	7	7
Trial & error Automatic	8	24	7	8	3
estimation	9	23	6	10	4
A practical example	10	23	11	11	2
	11	20	4	:	:
	12	19	17	•	•
	÷	:	÷	sample #	

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples

Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

 $r \leftrightarrow f_r$

э

A D F A B F A B F A B F

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation

Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

 $r \leftrightarrow f_r$

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Random variation leads to different type frequencies fk in every new sample
 - ▶ particularly obvious when we plot them in population order (bottom row, k ↔ f_k)

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Random variation leads to different type frequencies fk in every new sample
 - particularly obvious when we plot them in population order (bottom row, k ↔ f_k)
- Different ordering of types in the Zipf ranking for every new sample
 - Zipf rank r in sample \neq population rank k!
 - leads to severe problems with statistical methods

イロト 不得 トイヨト イヨト ヨー ろくで

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Random variation leads to different type frequencies fk in every new sample
 - particularly obvious when we plot them in population order (bottom row, k ↔ f_k)
- Different ordering of types in the Zipf ranking for every new sample
 - Zipf rank r in sample \neq population rank k!
 - leads to severe problems with statistical methods
- Individual types are irrelevant for our purposes, so let us take a perspective that abstracts away from them

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ

- frequency spectrum
- vocabulary growth curve

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Random variation leads to different type frequencies fk in every new sample
 - particularly obvious when we plot them in population order (bottom row, k ↔ f_k)
- Different ordering of types in the Zipf ranking for every new sample
 - Zipf rank r in sample \neq population rank k!
 - leads to severe problems with statistical methods
- Individual types are irrelevant for our purposes, so let us take a perspective that abstracts away from them

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- frequency spectrum
- vocabulary growth curve
- considerable amount of random variation still visible

Random variation: frequency spectrum

Random variation: vocabulary growth curve

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples

Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- nac

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely

➡ Take the average over a large number of samples

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- ➡ Take the average over a large number of samples
 - Such averages are called expected values or expectations in statistics (frequentist approach)

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely
- ➡ Take the average over a large number of samples
 - Such averages are called expected values or expectations in statistics (frequentist approach)
 - Notation: E[V(N)] and $E[V_m(N)]$
 - ► indicates that we are referring to expected values for a sample of size N
 - rather than to the specific values V and V_m observed in a particular sample or a real-world data set

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

• Usually we can omit the sample size: E[V] and $E[V_m]$

The expected frequency spectrum

The expected vocabulary growth curve

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Great expectations made easy

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example Fortunately, we don't have to take many thousands of samples to calculate expectations: there is a (relatively simple) mathematical solution (
 Wednesday)

・ロット (雪) ・ (目) ・ (目) ・ (口)

Great expectations made easy

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Fortunately, we don't have to take many thousands of samples to calculate expectations: there is a (relatively simple) mathematical solution (
 Wednesday)
- This solution also allows us to estimate the amount of random variation -> variance and confidence intervals
 - example: expected VGCs with confidence intervals
 - we won't pursue variance any further in this course

イロト 不得 トイヨト イヨト ヨー ろくで

Confidence intervals for the expected VGC

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

A mini-example

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation

Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example ▶ G. K. Zipf claimed that the distribution of English word frequencies follows Zipf's law with $a \approx 1$

► a ≈ 1.5 seems a more reasonable value when you look at larger text samples than Zipf did

A mini-example

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation

Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- ▶ G. K. Zipf claimed that the distribution of English word frequencies follows Zipf's law with $a \approx 1$
 - ► a ≈ 1.5 seems a more reasonable value when you look at larger text samples than Zipf did
- The most frequent word in English is *the* with $\pi \approx .06$

A mini-example

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- ▶ G. K. Zipf claimed that the distribution of English word frequencies follows Zipf's law with $a \approx 1$
 - $a \approx 1.5$ seems a more reasonable value when you look at larger text samples than Zipf did
- The most frequent word in English is *the* with $\pi \approx .06$
- ► Zipf-Mandelbrot law with a = 1.5 and b = 7.5 yields a population model where $\pi_1 \approx .06$ (by trial & error)

イロト 不得 トイヨト イヨト ヨー ろくで

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation

Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

How many different words do we expect to find in a 1-million word text?

- ► $N = 1,000,000 \rightarrow E[V(N)] = 33026.7$
- 95%-confidence interval: V(N) = 32753.6...33299.7

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter

Trial & error Automatic estimation

A practical example

- How many different words do we expect to find in a 1-million word text?
 - ► $N = 1,000,000 \rightarrow E[V(N)] = 33026.7$
 - ▶ 95%-confidence interval: V(N) = 32753.6...33299.7
- How many do we really find?
 - Brown corpus: 1 million words of edited American English

イロト 不得 トイヨト イヨト ヨー ろくで

• $V = 45215 \rightarrow ZM$ model is not quite right

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter

Trial & error Automatic estimation

A practical example

- How many different words do we expect to find in a 1-million word text?
 - ► $N = 1,000,000 \rightarrow E[V(N)] = 33026.7$
 - ▶ 95%-confidence interval: V(N) = 32753.6...33299.7
- How many do we really find?
 - Brown corpus: 1 million words of edited American English
 - $V = 45215 \rightarrow ZM$ model is not quite right
 - Physicists (and some mathematicians) are happy as long as they get the order of magnitude right ...

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

How many different words do we expect to find in a 1-million word text?

- ► $N = 1,000,000 \rightarrow E[V(N)] = 33026.7$
- ▶ 95%-confidence interval: V(N) = 32753.6...33299.7
- How many do we really find?
 - Brown corpus: 1 million words of edited American English
 - $V = 45215 \rightarrow ZM$ model is not quite right
 - Physicists (and some mathematicians) are happy as long as they get the order of magnitude right ...

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Model was not based on actual data!

Outline

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

he type population

Sampling from the population

イロト 不良 とくほう イロー

э

Parameter estimation

A practical example

Estimating model parameters

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Parameter settings in the mini-example were based on general assumptions (claims from the literature)
- But we also have empirical data on the word frequency distribution of English available (the Brown corpus)

Estimating model parameters

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Parameter settings in the mini-example were based on general assumptions (claims from the literature)
- But we also have empirical data on the word frequency distribution of English available (the Brown corpus)
- Choose parameters so that population model matches the empirical distribution as well as possible

Estimating model parameters

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- Parameter settings in the mini-example were based on general assumptions (claims from the literature)
- But we also have empirical data on the word frequency distribution of English available (the Brown corpus)
- Choose parameters so that population model matches the empirical distribution as well as possible
- E.g. by trial and error . . .
 - guess parameters
 - compare model predictions for sample of size N₀ with observed data (N₀ tokens)
 - based on frequency spectrum or vocabulary growth curve

- change parameters & repeat until satisfied
- This process is called parameter estimation

Populations & samples

Type probabilities 7M & f7M

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic

A practical

Populations & samples

Type probabilities 7M & f7M

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic

A practical

э

Populations & samples

Type probabilities 7M & f7M

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic

A practical

э

Populations & samples

Type probabilities 7M & f7M

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic

A practical

Populations & samples

Baroni & Evert 25000 a = 1.7, b = 7.550000 a = 1.7, b = 7.5observed ZM model 20000 40000 Type probabilities 7M & f7M 15000 30000 V(N)/E[V(N)] Sampling from V_m/E[V_m] Random samples 10000 20000 Expectation Mini-example 10000 2000 observed Trial & error ZM model Automatic 0 0 0e+00 2e+05 A practical 4e+056e+05 8e+05 Ν m

1e+06

э

Populations & samples

Type probabilities 7M & f7M

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic

A practical

э

Populations & samples

Type probabilities 7M & f7M

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic

A practical

э

Automatic parameter estimation

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

Parameter estimation by trial & error is tedious
Iet the computer to the work!

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 直||| 釣A@

Automatic parameter estimation

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Parameter estimation by trial & error is tedious
 - → let the computer to the work!
- Need cost function to quantify "distance" between model expectations and observed data
 - based on vocabulary size and vocabulary spectrum (these are the most convenient criteria)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Automatic parameter estimation

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Parameter estimation by trial & error is tedious
 - → let the computer to the work!
- Need cost function to quantify "distance" between model expectations and observed data
 - based on vocabulary size and vocabulary spectrum (these are the most convenient criteria)
- Computer estimates parameters by automatic minimization of cost function
 - clever algorithms exist that find out quickly in which direction they have to "push" the parameters to approach the minimum

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

implemented in standard software packages

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

• Cost functions compare expected frequency spectrum $E[V_m(N_0)]$ with observed spectrum $V_m(N_0)$

- 日本 - 1 日本 - 1 日本 - 1 日本

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Cost functions compare expected frequency spectrum $E[V_m(N_0)]$ with observed spectrum $V_m(N_0)$
- ▶ Choice #1: how to weight differences
 - absolute values of differences $\sum_{m=1}^{M} |V_m E[V_m]|$
 - mean squared error $\frac{1}{M} \sum_{m=1}^{M} (V_m E[V_m])^2$
 - chi-squared criterion: scale by estimated variances

(日) (四) (王) (日) (日) (日)

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Cost functions compare expected frequency spectrum $E[V_m(N_0)]$ with observed spectrum $V_m(N_0)$
- ▶ Choice #1: how to weight differences
- ▶ Choice #2: how many spectrum elements to use
 - typically between M = 2 and M = 15
 - ▶ what happens if *M* < number of parameters?

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Cost functions compare expected frequency spectrum $E[V_m(N_0)]$ with observed spectrum $V_m(N_0)$
- ▶ Choice #1: how to weight differences
- ▶ Choice #2: how many spectrum elements to use
 - typically between M = 2 and M = 15
 - ▶ what happens if *M* < number of parameters?
- ► For many applications, it is important to match V precisely: additional constraint E[V(N₀)] = V(N₀)
 - general principle: you can match as many constraints as there are free parameters in the model

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Cost functions compare expected frequency spectrum $E[V_m(N_0)]$ with observed spectrum $V_m(N_0)$
- ▶ Choice #1: how to weight differences
- ▶ Choice #2: how many spectrum elements to use
 - typically between M = 2 and M = 15
 - ▶ what happens if *M* < number of parameters?
- ► For many applications, it is important to match V precisely: additional constraint E[V(N₀)] = V(N₀)
 - general principle: you can match as many constraints as there are free parameters in the model
- Felicitous choice of cost function and *M* can substantially improve the quality of the estimated model

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

► It isn't a science, it's an art ...

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Automatic estimation procedure minimizes cost function until no further improvement can be found
 - this is a so-called local minimum of the cost function
 - not necessarily the global minimum that we want to find

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Automatic estimation procedure minimizes cost function until no further improvement can be found
 - this is a so-called local minimum of the cost function
 - not necessarily the global minimum that we want to find

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Key question: is the estimated model good enough?

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Automatic estimation procedure minimizes cost function until no further improvement can be found
 - this is a so-called local minimum of the cost function
 - not necessarily the global minimum that we want to find

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Key question: is the estimated model good enough?
- In other words: does the model provide a plausible explanation of the observed data as a random sample from the population?

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Automatic estimation procedure minimizes cost function until no further improvement can be found
 - this is a so-called local minimum of the cost function
 - not necessarily the global minimum that we want to find
- Key question: is the estimated model good enough?
- In other words: does the model provide a plausible explanation of the observed data as a random sample from the population?
- Can be measured by goodness-of-fit test
 - use special tests for such models (Baayen 2001)
 - p-value specifies whether model is plausible
 - ► small p-value → reject model as explanation for data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

we want to achieve a high p-value

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

Automatic estimation

A practical example

- Automatic estimation procedure minimizes cost function until no further improvement can be found
 - this is a so-called local minimum of the cost function
 - not necessarily the global minimum that we want to find
- Key question: is the estimated model good enough?
- In other words: does the model provide a plausible explanation of the observed data as a random sample from the population?
- Can be measured by goodness-of-fit test
 - use special tests for such models (Baayen 2001)
 - p-value specifies whether model is plausible
 - ► small p-value → reject model as explanation for data
 - we want to achieve a high p-value
- ► Typically, we find p < .001 but the models can still be useful for many purposes!

Mini-example (cont'd)

▶ We started with a = 1.5 and b = 7.5 (general assumptions)

A D F A B F A B F A B F

э

Mini-example (cont'd)

• By trial & error we found a = 2.0 and b = 550

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Mini-example (cont'd)

- Automatic estimation procedure: a = 2.39 and b = 1968
- Goodness-of-fit: $p \approx 0$ (but much better than before!)

Outline

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

he type population

Sampling from the population

Parameter estimation

A practical example

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

A practical example: extrapolate vocabulary growth in Dickens' novel Oliver Twist

▲日▶▲圖▶▲目▶▲目▶ 目 のへの

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

A practical example: extrapolate vocabulary growth in Dickens' novel Oliver Twist

• Observed data: $N_0 = 157302$, $V(N_0) = 10710$

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

A practical example: extrapolate vocabulary growth in Dickens' novel Oliver Twist

イロト 不得 トイヨト イヨト ヨー ろくで

- Observed data: $N_0 = 157302$, $V(N_0) = 10710$
- Our choices (experimentation & experience):
 - population model: finite Zipf-Mandelbrot
 - cost function: chi-squared type
 - number of spectrum elements: M = 10
 - additional constraint: $E[V(N_0)] = V(N_0)$

Populations & samples

Baroni & Evert

The population

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- A practical example: extrapolate vocabulary growth in Dickens' novel Oliver Twist
- Observed data: $N_0 = 157302$, $V(N_0) = 10710$
- Our choices (experimentation & experience):
 - population model: finite Zipf-Mandelbrot
 - cost function: chi-squared type
 - number of spectrum elements: M = 10
 - additional constraint: $E[V(N_0)] = V(N_0)$
- Automatic parameter estimation yields
 - *a* = 1.45, *b* = 34.6, *S* = 20587
 - population vocabulary size is extremely small
 - but this model extrapolates only the vocabulary used in Oliver Twist, not the full vocabulary of Charles Dickens

Results for Oliver Twist

Populations & samples Baroni & Evert a = 1.45, b = 34.59, S = 20587 5000 a = 1.45, b = 34.59, S = 20587 15000 observed expected Type probabilities 4000 V(N)/E[V(N)]/V1(N)/E[V1(N)] 7M & f7M 10000 3000 Sampling from V_m/E[V_m] Random samples 2000 Expectation Mini-example 5000 1000 observed Trial & error expected Automatic 0 0 50000 A practical 0 150000 250000 example m Ν

- Goodness-of-fit: $p = 3.6 \cdot 10^{-40}$
 - but visually, the approximation is very good

350000

э

Results for *Oliver Twist*

Baroni & Evert

7M & f7M

Expectation

Trial & error

Automatic

A practical

example

a = 1.45, b = 34.59, S = 20587 5000 a = 1.45, b = 34.59, S = 20587 15000 observed expected Type probabilities 4000 V(N)/E[V(N)]/V1(N)/E[V1(N)] 10000 3000 Sampling from V_m/E[V_m] Random samples 2000 Mini-example 5000 1000 observed expected 0 0 50000 0 150000 250000 m Ν

- Goodness-of-fit: $p = 3.6 \cdot 10^{-40}$
 - but visually, the approximation is very good

350000

э