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samples There are two reasons why we want to construct a model of
Baroni & Evet  the type population distribution:
» Population distribution is interesting by itself, for
e P theoretical reasons or in NLP applications
» We know how to simulate sampling from population
=>» once we have a population model, we can obtain
estimates of V/(N), Vi(N) and similar quantities for
arbitrary sample sizes N

A third reason:

» The bell-bottom shape of the observed Zipf ranking does
not fit Zipf's law (type frequencies must be integers!)

» |t is more natural to characterize occurrence probabilities
(for which there is no such restriction) by Zipf's law
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Populations & . . .
Pamples > A type population is characterized by

Baroni & Evert a) a set of types Wi
b) the corresponding occurrence probabilities 7
Type probabilities » The actual “identities” of the types are irrelevant
(for word frequency distributions)
» we don't care whether wy3194 is wormhole or heatwave
» It is customary (and convenient) to arrange types in
order of decreasing probability: 73 > > w3 > - --
» NB: this is usually not the same ordering as in the
observed Zipf ranking (we will see examples of this later)
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samples And what their interpretation is?

Baroni & Evert »

Type probabilities

. = relative frequency of wy in huge body of text
» e.g. population = “written English”, formalized as all
English writing that has ever been published
» also: mx = chances that a token drawn at random
belongs to type wy

T, = output probability for wy in generative model

» e.g. psycholinguistic model of a human speaker

» 7, = probability that next word uttered by the speaker
belongs to type wy (without knowledge about context
and previous words)

analogous interpretations for other linguistic and
non-linguistic phenomena
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(@®)  The problem with probabilities ...

Populations &

samples » We cannot measure these probabilities directly

Baroni & Evert

» In principle, such probabilities can be estimated from a
sample (that's what most of statistics is about), e.g.

Type probabilities

™=

n

» But we cannot reliably estimate thousands or millions of
mk's from any finite sample (just think of all the unseen
types that do not occur in the sample)
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Type probabilities

and its solution

= \\e need a model for the population

» This model embodies our hypothesis that the distribution
of type probabilities has a certain general shape
(more precisely, we speak of a family of models)

» The exact form of the distribution is then determined by
a small number of parameters (typically 2 or 3)

> These parameters can be estimated with relative ease
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Populations &

samples What is the right family of models for lexical frequency
Baroni & Evert  distributions?

» We have already seen that the Zipf-Mandelbrot law
Population models captures the distribution of observed frequencies very
well, across many phenomena and data sets
» Re-phrase the law for type probabilities instead of
frequencies:

C
(k + b)?

T =

» Two free parameters: a>1and b >0

» C is not a parameter but a normalization constant,
needed to ensure that ), m) =1

w the Zipf-Mandelbrot population model
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Populations &

samples » Zipf-Mandelbrot population model characterizes an
Baroni & Evert infinite type population: there is no upper bound on k,
and the type probabilities m, can become arbitrarily small
» 7 =107° (once every million words), 7 = 10~° (once
every billion words), m = 1072 (once on the entire
Internet), 7 = 10719 (once in the universe?)

ZM & fZM

» Alternative: finite (but often very large) number
of types in the population

» We call this the population vocabulary size S
(and write S = co for an infinite type population)
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\3\%‘4‘3 The finite Zipf-Mandelbrot model

Populations &

samples » The finite Zipf-Mandelbrot model simply stops after
Baroni & Evert the ﬁrst S types (W]_, ey WS)

> S becomes a new parameter of the model

=» the finite Zipf-Mandelbrot model has 3 parameters
M & fZIM

» NB: C will not have the same value as for the
corresponding infinite ZM model

Abbreviations: ZM for Zipf-Mandelbrot model,
and fZM for finite Zipf-Mandelbrot model



i
ipt
N

|3

\Z

Populations &
samples

Baroni & Evert

ZM & fZM

The next steps

Once we have a population model ...

» We still need to estimate the values of its parameters
» we'll see later how we can do this



(@R}  The next steps

Populations &

samples Once we have a population model . ..

B i & Evert . . .
aront & Bver > We still need to estimate the values of its parameters

» we'll see later how we can do this

» We want to simulate random samples from the
population described by the model
» basic assumption: real data sets (such as corpora) are
random samples from this population

ZM & fZM



(R}  The next steps

~
Populations & .
samples Once we have a population model ...
Baroni & Evert : i i
aront & Ever > We still need to estimate the values of its parameters

» we'll see later how we can do this

» We want to simulate random samples from the
population described by the model
» basic assumption: real data sets (such as corpora) are
random samples from this population
> this allows us to predict vocabulary growth, the number
of previously unseen types as more text is added to a
corpus, the frequency spectrum of a larger data set, etc.

ZM & fZM



(R}  The next steps

~
Populations & .
samples Once we have a population model ...
Baroni & Evert : i i
aront & Ever > We still need to estimate the values of its parameters

» we'll see later how we can do this

» We want to simulate random samples from the
population described by the model

» basic assumption: real data sets (such as corpora) are
random samples from this population

> this allows us to predict vocabulary growth, the number
of previously unseen types as more text is added to a
corpus, the frequency spectrum of a larger data set, etc.

» it will also allow us to estimate the model parameters

ZM & fZM
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Sampling from a population model

Assume we believe that the population we are interested in
can be described by a Zipf-Mandelbrot model:
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Populations &

samples Assume we believe that the population we are interested in
Baoni & Evert  can be described by a Zipf-Mandelbrot model:
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Random samples = =
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L
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Use computer simulation to sample from this model:

» Draw N tokens from the population such that in
each step, type wy has probability 7, to be picked
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Sampling from a population model

#1: 1

#2: 286

42

28

34

23

23 108
time order room school town course area course time
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Sampling from a population model

#1:

#2:
#3:

1

286

2

42 34

28 23

11 105

23 108
time order room school town course area course time

36

21
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18 48

4 7
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Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1
time order room school town course area course time

#2: 286 28 23 36 3 4 7 4 8
#3: 2 11 105 21 11 17 17 1 16

#4: 44 3 110 34 223 2 25 20 28
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Sampling from a population model

#1:

#2:
#3:
#4:
#5:
#6:
#T:
#8:

1

42 34 23

108

18

48

18 1

time order room school town course area course time

286

2

44

24

3

10

11

28 23 36
11 105 21
3 110 34
81 54 11
65 9 165
21 11 60
7 147 5

3

11

223

164

24

4

17

2

61

42

54

19

7

17

25

1

16

18

15

4 8

1 16

20 28

31 35

20 7

16 203

86 37
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Populations & )
samples In thIS Way, we can ...

Baroni & Evert » draw samples of arbitrary size N
» the computer can do it efficiently even for large N

» draw as many samples as we need

» compute type frequency lists, frequency spectra and
vocabulary growth curves from these samples
> i.e., we can analyze them with the same methods that we
have applied to the observed data sets

Random samples

Here are some results for samples of size N = 1000 ...
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Samples: type frequency list & spectrum

rank r | f, type k
1137 6
2|36 1
3133 3
4131 7
5131 10
6|30 5
7|28 12
8|27 2
9| 24 4

10 | 24 16
11 | 23 8
12 | 22 14
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sample #1
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Samples: type frequency list & spectrum

rank r | f, type k
1139 2
2| 34 3
3130 5
4|29 10
5128 8
6|26 1
7125 13
8|24 7
9|23 6

10 | 23 11
11 | 20 4
12 | 19 17

3
S

76

27
17
10

—H O 00 ~NO Ol WN
N AW N OO

—_ =

sample #2
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wa‘iR} Random variation in type-frequency lists

Populations &

samples » Random variation leads to different type frequencies fy
Baroni & Evert in every new sample
» particularly obvious when we plot them in population
order (bottom row, k < f})
» Different ordering of types in the Zipf ranking
for every new sample
Random samples » Zipf rank r in sample # population rank k!
> leads to severe problems with statistical methods
» Individual types are irrelevant for our purposes, so let us
take a perspective that abstracts away from them
» frequency spectrum
» vocabulary growth curve

w considerable amount of random variation still visible
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Random variation: vocabulary growth curve
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Expected values

> There is no reason why we should choose a particular
sample to make a prediction for the real data — each one
is equally likely or unlikely

w Take the average over a large number of samples

> Such averages are called expected values or
expectations in statistics (frequentist approach)
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Populations & ) )
samples » There is no reason why we should choose a particular

Baroni & Evert sample to make a prediction for the real data — each one
is equally likely or unlikely

w Take the average over a large number of samples

> Such averages are called expected values or
expectations in statistics (frequentist approach)
» Notation: E[V(N)] and E[V,(N)]
» indicates that we are referring to expected values for a
sample of size N
» rather than to the specific values V and V,,
observed in a particular sample or a real-world data set

Expectation

» Usually we can omit the sample size: E[V] and E[V/};]
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Great expectations made easy

» Fortunately, we don’t have to take many thousands of
samples to calculate expectations: there is a (relatively
simple) mathematical solution (= Wednesday)

» This solution also allows us to estimate the amount of
random variation = variance and confidence intervals

» example: expected VGCs with confidence intervals
» we won't pursue variance any further in this course



3 Confidence intervals for the expected VGC

Populations &
samples

Baroni & Evert

Sample #1 Sample #1

200
200

150
|
150
|

E[V(N)]
100
|
E[Va(N)]
100
|

Expectation

50

— V(N)
— E[V(N)]

— vi(N)
— E[vi(N)]

°© T T T T ° T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000



:\:é‘i\i; A mini-example

Populations &

samples > G. K. Zipf claimed that the distribution of English word
Baroni & Evert frequencies follows Zipf's law with a ~ 1

» a~ 1.5 seems a more reasonable value when you
look at larger text samples than Zipf did

Mini-example



:\:é‘i\i; A mini-example

Populations &

samples > G. K. Zipf claimed that the distribution of English word
Baroni & Evert frequencies follows Zipf's law with a ~ 1

» a~ 1.5 seems a more reasonable value when you
look at larger text samples than Zipf did

> The most frequent word in English is the with = ~ .06

Mini-example



@R} A mini-example

Populations &

samples > G. K. Zipf claimed that the distribution of English word
Baroni & Evert frequencies follows Zipf's law with a ~ 1

» a~ 1.5 seems a more reasonable value when you
look at larger text samples than Zipf did
> The most frequent word in English is the with = ~ .06

» Zipf-Mandelbrot law with a = 1.5 and b = 7.5 yields a
population model where m; ~ .06 (by trial & error)

Mini-example
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» How many different words do we expect to find in a

1-million word text?
> N = 1,000,000 - E[V(N)] = 33026.7

» 95%-confidence interval: V(N) = 32753.6...

33299.7
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A mini-example

» How many different words do we expect to find in a
1-million word text?
> N = 1,000,000 - E[V(N)] = 33026.7
» 95%-confidence interval: V(N) = 32753.6...33299.7
» How many do we really find?

» Brown corpus: 1 million words of edited American English
» V =45215 - ZM model is not quite right
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Po‘)sl;fqt,lfef& » How many different words do we expect to find in a
1-million word text?

> N = 1,000,000 - E[V(N)] = 33026.7

» 95%-confidence interval: V(N) =32753.6...33299.7

» How many do we really find?
» Brown corpus: 1 million words of edited American English

» V =45215 - ZM model is not quite right
Mini-example » Physicists (and some mathematicians) are happy as long
as they get the order of magnitude right ...

Baroni & Evert



(z® A mini-example

Po‘)sl;fqt,fef& » How many different words do we expect to find in a
Baroni & Evert 1-million word text?
» N = 1,000,000 = E[V(N)] = 33026.7
» 95%-confidence interval: V(N) =32753.6...33299.7
» How many do we really find?
» Brown corpus: 1 million words of edited American English
» V =45215 - ZM model is not quite right
Mini-example » Physicists (and some mathematicians) are happy as long
as they get the order of magnitude right ...

== Model was not based on actual data!
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Populations & . . ..
samples > Parameter settings in the mini-example were based on
Baroni & Evert general assumptions (claims from the literature)

» But we also have empirical data on the word frequency
distribution of English available (the Brown corpus)

Trial & error
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samples > Parameter settings in the mini-example were based on
Baroni & Evert general assumptions (claims from the literature)

» But we also have empirical data on the word frequency
distribution of English available (the Brown corpus)

» Choose parameters so that population model matches
the empirical distribution as well as possible

Trial & error
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;  Estimating model parameters

Populations & ) . L.
samples » Parameter settings in the mini-example were based on

Baroni & Evert general assumptions (claims from the literature)

» But we also have empirical data on the word frequency
distribution of English available (the Brown corpus)

» Choose parameters so that population model matches
the empirical distribution as well as possible

» E.g. by trial and error ...

> guess parameters
Tl & error » compare model predictions for sample of size N
with observed data (Ny tokens)

» based on frequency spectrum or vocabulary growth curve
» change parameters & repeat until satisfied

» This process is called parameter estimation
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» Parameter estimation by trial & error is tedious
=» let the computer to the work!

» Need cost function to quantify “distance” between
model expectations and observed data

» based on vocabulary size and vocabulary spectrum
(these are the most convenient criteria)
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Automatic parameter estimation

» Parameter estimation by trial & error is tedious
=» let the computer to the work!

» Need cost function to quantify “distance” between
model expectations and observed data

>

based on vocabulary size and vocabulary spectrum
(these are the most convenient criteria)

» Computer estimates parameters by automatic
minimization of cost function

>

clever algorithms exist that find out quickly in which
direction they have to “push” the parameters to
approach the minimum

implemented in standard software packages
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Cost functions for parameter estimation

» Cost functions compare expected frequency spectrum
E[Vin(No)] with observed spectrum V,,(/Np)
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Cost functions for parameter estimation

» Cost functions compare expected frequency spectrum
E[Vin(No)] with observed spectrum V,,(/Np)

» Choice #1: how to weight differences
M
> absolute values of differences » |V, — E[ V|

m=1
M

1 2
» mean squared error o Z(Vm —E[Va])

m=1
» chi-squared criterion: scale by estimated variances
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» Cost functions compare expected frequency spectrum
E[Vin(No)] with observed spectrum V,,(/Np)

> Choice #1: how to weight differences

» Choice #2: how many spectrum elements to use

» typically between M =2 and M =15
» what happens if M < number of parameters?
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Populations &

samples » Cost functions compare expected frequency spectrum
Baroni & Evert E[Vin(No)] with observed spectrum V,,(/Np)

> Choice #1: how to weight differences
» Choice #2: how many spectrum elements to use
» typically between M =2 and M =15
» what happens if M < number of parameters?
» For many applications, it is important to match V
precisely: additional constraint E[V(Np)] = V(Np)
» general principle: you can match as many constraints
Automatic as there are free parameters in the model

estimation



giﬁ‘i} Cost functions for parameter estimation

Populations &

samples » Cost functions compare expected frequency spectrum
Baroni & Evert E[Vin(No)] with observed spectrum V,,(/Np)

> Choice #1: how to weight differences
» Choice #2: how many spectrum elements to use
» typically between M =2 and M =15
» what happens if M < number of parameters?
» For many applications, it is important to match V
precisely: additional constraint E[V(Np)] = V(Np)
» general principle: you can match as many constraints
Automatic as there are free parameters in the model

estimation

» Felicitous choice of cost function and M can
substantially improve the quality of the estimated model

» |t isn't a science, it's an art . ..
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» Automatic estimation procedure minimizes cost function
until no further improvement can be found
> this is a so-called local minimum of the cost function
» not necessarily the global minimum that we want to find
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» Automatic estimation procedure minimizes cost function
until no further improvement can be found

» this is a so-called local minimum of the cost function
» not necessarily the global minimum that we want to find

> Key question: is the estimated model good enough?
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Goodness-of-fit

» Automatic estimation procedure minimizes cost function
until no further improvement can be found

» this is a so-called local minimum of the cost function
» not necessarily the global minimum that we want to find
> Key question: is the estimated model good enough?

» In other words: does the model provide a plausible
explanation of the observed data as a random sample
from the population?



Goodness-of-fit

Populations & . . . . e .
samples » Automatic estimation procedure minimizes cost function
until no further improvement can be found
» this is a so-called local minimum of the cost function
» not necessarily the global minimum that we want to find

Baroni & Evert

> Key question: is the estimated model good enough?

» In other words: does the model provide a plausible
explanation of the observed data as a random sample
from the population?

» Can be measured by goodness-of-fit test

Automatic > use special tests for such models (Baayen 2001)
» p-value specifies whether model is plausible
» small p-value = reject model as explanation for data
= e want to achieve a high p-value
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» Automatic estimation procedure minimizes cost function
until no further improvement can be found
> this is a so-called local minimum of the cost function
» not necessarily the global minimum that we want to find

Baroni & Evert

> Key question: is the estimated model good enough?

» In other words: does the model provide a plausible
explanation of the observed data as a random sample
from the population?

» Can be measured by goodness-of-fit test

Automatic > use special tests for such models (Baayen 2001)
» p-value specifies whether model is plausible
» small p-value = reject model as explanation for data
= e want to achieve a high p-value

> Typically, we find p < .001 — but the models can still be
useful for many purposes!
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> We started with a=1.5and b=7.5
(general assumptions)
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> By trial & error we found a = 2.0 and b = 550

T
1e+06
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» Automatic estimation procedure: a = 2.39 and b = 1968
» Goodness-of-fit: p a0 (but much better than before!)
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> A practical example: extrapolate vocabulary growth in
Dickens’ novel Oliver Twist
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> A practical example: extrapolate vocabulary growth in
Dickens’ novel Oliver Twist

» Observed data: Ny = 157302, V(Np) = 10710



@ \?S?R‘

7

Populations &
samples

Baroni & Evert

A practical
example

Practical example: Oliver Twist

> A practical example: extrapolate vocabulary growth in
Dickens’ novel Oliver Twist

» Observed data: Ny = 157302, V(Np) = 10710

» Our

vV vy vy

choices (experimentation & experience):
population model: finite Zipf-Mandelbrot
cost function: chi-squared type

number of spectrum elements: M = 10
additional constraint: E[V(Ng)] = V(No)



{ \‘é%\y Practical example: Oliver Twist

Populations &

samples > A practical example: extrapolate vocabulary growth in
Baroni & Evert Dickens’ novel Oliver Twist

» Observed data: Ny = 157302, V(Np) = 10710
» Our choices (experimentation & experience):

population model: finite Zipf-Mandelbrot
cost function: chi-squared type

number of spectrum elements: M = 10
additional constraint: E[V(Ng)] = V(No)

» Automatic parameter estimation yields
a=1.45 b=34.6, S =20587
A practical » population vocabulary size is extremely small
example » but this model extrapolates only the vocabulary used in
Oliver Twist, not the full vocabulary of Charles Dickens

vV vy vy
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» Goodness-of-fit: p = 3.6-10740

» but visually, the approximation is very good
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» Goodness-of-fit: p = 3.6-10740

» but visually, the approximation is very good
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