

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

NRE model

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

Counting Words: LNRE Modelling

Marco Baroni & Stefan Evert

Málaga, 9 August 2006

Outline

LNRE models

Baroni & Evert

Computing expectations from the population model

expectations

Expectation = sample average

Poisson sampling
Plugging in ZM

Computing

The type density function and LNRE modeling

Pooling types
Type density

Zipf-Mandelbrot as LNRE model

LNRE models
Zinf-Mandelb

Wrapping up

as LNRE model
The problem
Type distribution

Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping u_l

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

▶ We justified an approach to lexical statistics based on population models (e.g., Zipf-Mandelbrot)

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

_NRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- We justified an approach to lexical statistics based on population models (e.g., Zipf-Mandelbrot)
- ▶ We discussed random samples and expected values

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average
Poisson sampling
Plugging in ZM

D II

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wranning III

- We justified an approach to lexical statistics based on population models (e.g., Zipf-Mandelbrot)
- ▶ We discussed random samples and expected values
- We showed how to estimate model parameters by comparing observed / expected frequency spectrum

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

Pooling types

Type density LNRE models

Zipf-Mandelbro as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ► We justified an approach to lexical statistics based on population models (e.g., Zipf-Mandelbrot)
- ► We discussed random samples and expected values
- ► We showed how to estimate model parameters by comparing observed / expected frequency spectrum
- ➤ We need an efficient way to calculate expected values
 - for random samples of arbitrary size N
 - given a model of the population type probabilities π_k

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping up

To calculate $E[V_m(N)]$...

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

To calculate $E[V_m(N)]$. . .

▶ Average V_m over a large number (n) of samples, all of them having the same size N

$$E[V_m(N)] \approx \frac{1}{n} \cdot (V_m^{(1)} + V_m^{(2)} + \dots + V_m^{(n)})$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wranning ur

To calculate $E[V_m(N)]$. . .

▶ Average V_m over a large number (n) of samples, all of them having the same size N

$$\mathrm{E}[V_m(N)] \approx \frac{1}{n} \cdot (V_m^{(1)} + V_m^{(2)} + \cdots + V_m^{(n)})$$

▶ Mathematically, $E[V_m(N)]$ is the limit of this expression for $n \to \infty$ (but you can just think of n as very large)

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRF models

Wrapping up

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRF models

Wrapping up

$$p_{k,m} := \binom{N}{m} (\pi_k)^m (1 - \pi_k)^{N-m}$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping ur

$$p_{k,m} := \binom{N}{m} (\pi_k)^m (1 - \pi_k)^{N-m}$$

- ▶ Which means that it will be counted in class V_m in approximately $n \cdot p_{k,m}$ out of n samples
 - ightharpoonup if n is large enough, this estimate is very accurate

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping ur

$$p_{k,m} := \binom{N}{m} (\pi_k)^m (1 - \pi_k)^{N-m}$$

- ▶ Which means that it will be counted in class V_m in approximately $n \cdot p_{k,m}$ out of n samples
 - ightharpoonup if n is large enough, this estimate is very accurate
- ▶ Taking the sum over all types w_k and dividing by n:

$$\mathrm{E}\big[V_m(N)\big] = \sum_k \rho_{k,m} = \sum_k \binom{N}{m} (\pi_k)^m (1-\pi_k)^{N-m}$$

LNRE models

Baroni & Evert

Computing expectations

Expectations

Expectation = sample average

Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ▶ What we have just calculated is a binomial expectation, i.e. the average over samples of the same fixed size N
 - arguably, statistically most appropriate

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling

Plugging in ZM

Pooling types

Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRF models

Wrapping up

▶ What we have just calculated is a binomial expectation, i.e. the average over samples of the same fixed size N

- arguably, statistically most appropriate
- ▶ But mathematically simpler to use **Poisson expectation**:

$$E[V_m(N)] = \sum_k \frac{(N\pi_k)^m}{m!} e^{-N\pi_k}$$

here, we sum over samples of various sizes close to N

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average

Poisson sampling Plugging in ZM

I NRE mode

Pooling types

Type density LNRE models

as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

Switch to Poisson sampling can be motivated in two ways:

LNRE models

Baroni & Evert

Computing expectations

Expectation =

sample average Poisson sampling Plugging in ZM

LNDE

Pooling types

Type density LNRE models

Zipf-Mandelbro as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping up

Switch to Poisson sampling can be motivated in two ways:

Philosophical:

Not as unreasonable as it seems: think of the frequency distribution of nouns in text sample of 1 million running words (such as the Brown corpus) → sample size N (= number of noun tokens) will be different for each sample

LNRE models

Baroni & Evert

Computing expectations

Expectation =

sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping u

Switch to Poisson sampling can be motivated in two ways:

► Philosophical:

Not as unreasonable as it seems: think of the frequency distribution of nouns in text sample of 1 million running words (such as the Brown corpus) → sample size N (= number of noun tokens) will be different for each sample

Practical:

When N is large and π small (as with word frequency distributions), Poisson probabilities are a very good approximation to binomial probabilities

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling Plugging in ZM

Pooling types Type density I NRF models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping III

Switch to Poisson sampling can be motivated in two ways:

Philosophical:

Not as unreasonable as it seems: think of the frequency distribution of nouns in text sample of 1 million running words (such as the Brown corpus) → sample size N (= number of noun tokens) will be different for each sample

► Practical:

- When N is large and π small (as with word frequency distributions), Poisson probabilities are a very good approximation to binomial probabilities
- ► In lexical statistics, word frequency distribution models almost always use Poisson expectations

Poisson expectations for V_m and V

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling Plugging in ZM

LNRE models

Pooling types Type density I NRF models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping up

$$E[V_m(N)] = \sum_k \frac{(N\pi_k)^m}{m!} \cdot e^{-N\pi_k}$$

$$\mathrm{E}\big[V(N)\big] = \sum_{k} \big(1 - e^{-N\pi_k}\big)$$

ightharpoonup E[V] sums over probabilities that w_k occurs at least once

Poisson expectations for V_m and V

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density I NRF models

Zipt-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

$$E[V_m(N)] = \sum_k \frac{(N\pi_k)^m}{m!} \cdot e^{-N\pi_k}$$

$$\mathrm{E}\big[V(N)\big] = \sum_{k} \big(1 - e^{-N\pi_k}\big)$$

- $lackbox{E}[V]$ sums over probabilities that w_k occurs at least once
- Now we need to plug in population model for π_k (we will use the Zipf-Mandelbrot model, of course)

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average
Poisson sampling

Plugging in ZM

LNRE model

Pooling types
Type density
I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRF models

Zipf-Mandelbrot:
$$\pi_k = \frac{C}{(k+b)^a}$$

$$E[V_m(N)] = \sum_k \frac{(N\pi_k)^m}{m!} \cdot e^{-N\pi_k}$$

$$\mathrm{E}ig[V(N)ig] = \sum_k ig(1 - e^{-N\pi_k}ig)$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Zipf-Mandelbrot:
$$\pi_k = \frac{C}{(k+b)^a}$$

$$\mathrm{E}\big[V_m(N)\big] = \sum_k \frac{(NC)^m}{(k+b)^{a\cdot m} \cdot m!} \cdot \mathrm{e}^{-\frac{NC}{(k+b)^a}}$$

$$\mathrm{E}[V(N)] = \sum_{k} (1 - e^{-N\pi_k})$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling

Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Zipf-Mandelbrot:
$$\pi_k = \frac{C}{(k+b)^a}$$

$$E[V_m(N)] = \sum_k \frac{(NC)^m}{(k+b)^{a \cdot m} \cdot m!} \cdot e^{-\frac{NC}{(k+b)^a}}$$

$$E[V_m(N)] = \sum_{k} (1 - e^{-\frac{NC}{(k+b)^a}})$$

LNRE models

Baroni & Evert

Computing expectations

Expectation =

sample average Poisson sampling

Plugging in ZM

LINKE mode

Pooling types
Type density
I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRF models

Wrapping up

Zipf-Mandelbrot: $\pi_k = \frac{C}{(k+b)^a}$

$$\mathrm{E}\big[V_m(N)\big] = \sum_k \frac{(NC)^m}{(k+b)^{a \cdot m} \cdot m!} \cdot e^{-\frac{NC}{(k+b)^a}}$$

$$E[V_m(N)] = \sum_{k} (1 - e^{-\frac{NC}{(k+b)^a}})$$

This looks ugly even to a mathematician ...

... and to a computer

Outline

LNRE models

Baroni & Evert

Computing expectations from the population model

expectations

Expectation = sample average

Poisson sampling
Plugging in ZM

Computing

The type density function and LNRE modeling

LNRE models

Pooling types Type density I NRF models Zipf-Mandelbrot as LNRE model

Zipf-Mandelbrot as LNRE model

The problem Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models Wrapping up

The bad news

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE Mode

Pooling types Type density

Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wranning ur

$$E[V_m(N)] = \sum_{k} \frac{(NC)^m}{(k+b)^{a \cdot m} \cdot m!} \cdot e^{-\frac{NC}{(k+b)^a}}$$

- ▶ This looks ugly even to a mathematician
- Are we stuck?

An idea...

LNRE models

Baroni & Evert

Computing
expectations

Expectation = sample average
Poisson sampling

Plugging in ZM LNRE models

Pooling types Type density

Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ► Look back at the observed word frequency data
- ▶ Huge type frequency lists with many ties in the ranking
 - and unstable ordering across different samples

An idea...

LNRE models

Baroni & Evert

Computing
expectations

Expectation = sample average
Poisson sampling

Plugging in ZM LNRE models

Pooling types Type density LNRF models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping III

- ► Look back at the observed word frequency data
- Huge type frequency lists with many ties in the ranking
 and unstable ordering across different samples
- ► More robust view on the data by pooling types with the same frequency → frequency spectrum

An idea...

LNRE models

Baroni & Evert

Computing
expectations
Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE model

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ► Look back at the observed word frequency data
- Huge type frequency lists with many ties in the ranking
 and unstable ordering across different samples
- ► More robust view on the data by pooling types with the same frequency → frequency spectrum
- ▶ Perhaps we can use a similar approach for the probabilities of the population model?

Pooling type probabilities

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density

Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

▶ Different from frequency spectrum because ZM model stipulates different, unique probabiliy π_k for each type k

Pooling type probabilities

LNRE models

Baroni & Evert

Computing expectations

Expectation =

sample average Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density I NRF models

Zipf-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ Different from frequency spectrum because ZM model stipulates different, unique probabiliy π_k for each type k
- ► Pool types with **similar** probabilities into **cells**
 - intuition: contribution to $E[V_m]$ should be similar
 - e.g. for $\pi_k = .02501$ vs. $\pi_l = .02504$
 - histogram for the distribution of type probabilities

Pooling type probabilities

LNRE models

Baroni & Evert

Computing

Expectation = sample average
Poisson sampling

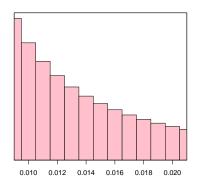
Plugging in ZM LNRE models

Pooling types
Type density
I NRF models

Zipf-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ▶ Different from frequency spectrum because ZM model stipulates different, unique probabiliy π_k for each type k
- ► Pool types with **similar** probabilities into **cells**
 - intuition: contribution to $E[V_m]$ should be similar
 - e.g. for $\pi_k = .02501$ vs. $\pi_l = .02504$
 - histogram for the distribution of type probabilities



- L = 1000 cells
- ▶ cell j represents types with $\pi_k \approx j/L$
- cell count c_j = area of bar in histogram

Plugging in, 2nd attempt

LNRE models

Baroni & Evert

Computing expectations Expectation = sample average Poisson sampling

Plugging in ZM

Pooling types

Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ Produce histogram with L cells (e.g., L = 1000)
- ▶ Cell number j contains types w_k with $\pi_k \approx j/L$
- ► The number of such types is the cell count c_j

Plugging in, 2nd attempt

LNRE models

Baroni & Evert

Computing expectations

Expectation =

Expectation = sample average Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density

LNRE models

as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ▶ Produce histogram with L cells (e.g., L = 1000)
- ▶ Cell number j contains types w_k with $\pi_k \approx j/L$
- ▶ The number of such types is the cell count c_j
- ▶ Now plug this into the Poisson expectation formula:

$$E[V_m(N)] = \sum_k \frac{(N\pi_k)^m}{m!} \cdot e^{-N\pi_k}$$

Plugging in, 2nd attempt

LNRE models

Baroni & Evert

Computing expectations Expectation =

sample average Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density LNRF models

Zipf-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping up

- ▶ Produce histogram with L cells (e.g., L = 1000)
- ▶ Cell number j contains types w_k with $\pi_k \approx j/L$
- ► The number of such types is the cell count c_j
- ▶ Now plug this into the Poisson expectation formula:

$$E[V_m(N)] = \sum_k \frac{(N\pi_k)^m}{m!} \cdot e^{-N\pi_k}$$

ļ

$$\mathrm{E}\big[V_m(N)\big] = \sum_{i=1}^L \frac{(N \cdot j)^m}{L^m \cdot m!} \cdot e^{-\frac{N \cdot j}{L}} \cdot c_j$$

LNRE models

Baroni & Evert

Computing expectations Expectation =

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE model

Pooling types Type density

Type density LNRE models

as LNRE model

The problem Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping up

- ▶ Produce histogram with L cells (e.g., L = 1000)
- ▶ Cell number j contains types w_k with $\pi_k \approx j/L$
- ► The number of such types is the cell count c_j
- ▶ Now plug this into the Poisson expectation formula:

$$E[V_m(N)] = \sum_k \frac{(N\pi_k)^m}{m!} \cdot e^{-N\pi_k}$$

$$\|$$

$$\mathrm{E}\big[V_m(N)\big] = \sum_{i=1}^L \frac{(N \cdot j)^m}{L^m \cdot m!} \cdot e^{-\frac{N \cdot j}{L}} \cdot c_j$$

This looks much better (to a mathematician ...)

LNRE models

Baroni & Evert

Computing

Expectation = sample average Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density

Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

▶ Shorter summation for small $L \rightarrow$ easier to calculate

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE model

Pooling types Type density I NRF models

Zipf-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ Shorter summation for small $L \rightarrow$ easier to calculate
- ▶ But then it is only a coarse approximation:
 - for L = 1000, we pool all types with $\pi_k < .001$ together
 - some occcur once in a milion words, some once in 100 million words, some only once in a billion words

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

Pooling types

Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ Shorter summation for small $L \rightarrow$ easier to calculate
- ▶ But then it is only a coarse approximation:
 - for L=1000, we pool all types with $\pi_k < .001$ together
 - ► some occcur once in a milion words, some once in 100 million words, some only once in a billion words
- ▶ We can refine the histogram, i.e. increase number *L* of cells, but then the summation becomes expensive again

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

Pooling types
Type density
I NRF models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ Shorter summation for small $L \rightarrow$ easier to calculate
- ▶ But then it is only a coarse approximation:
 - for L = 1000, we pool all types with $\pi_k < .001$ together
 - ▶ some occcur once in a milion words, some once in 100 million words, some only once in a billion words
- ▶ We can refine the histogram, i.e. increase number *L* of cells, but then the summation becomes expensive again
- ▶ The real advantage: we have moved the population model equation from π_k to c_j , and thus out of the exponential and power functions
 - this makes it much easier to plug in a population model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode Pooling types

Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ Shorter summation for small $L \rightarrow$ easier to calculate
- ▶ But then it is only a coarse approximation:
 - for L=1000, we pool all types with $\pi_k < .001$ together
 - some occcur once in a milion words, some once in 100 million words, some only once in a billion words
- ▶ We can refine the histogram, i.e. increase number *L* of cells, but then the summation becomes expensive again
- ► The real advantage: we have moved the population model equation from π_k to c_j , and thus out of the exponential and power functions
 - this makes it much easier to plug in a population model

$$\mathbb{E}\big[V_m(N)\big] = \left(\frac{N}{L}\right)^m \cdot \left(\sum_{j=1}^L \frac{j^m}{m!} e^{-\frac{N}{L}j} \cdot c_j\right)$$

LNRE models

Baroni & Evert

Computing

expectations

Expectation = sample average

Poisson sampling

Plugging in ZM

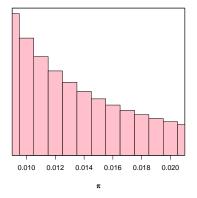
LINKE mode

Pooling types Type density

LNRE models

as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models



- ► L = 1000 cells
- ► L = 2000 cells
- ► L = 5000 cells

LNRE models

Baroni & Evert

Computing

Expectation = sample average Poisson sampling Plugging in ZM

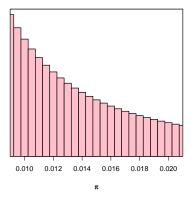
LINKE mode

Pooling types Type density

Type density LNRE models

as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models



- ► L = 1000 cells
- ightharpoonup L = 2000 cells
- ► L = 5000 cells

LNRE models

Baroni & Evert

Computing

Expectation = sample average Poisson sampling Plugging in ZM

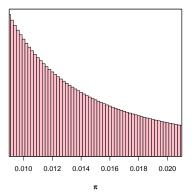
LINKE mode

Pooling types Type density

LNRE models

as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models



- ► L = 1000 cells
- ► L = 2000 cells
- ► L = 5000 cells

LNRE models

Baroni & Evert

Computing

expectations

Expectation = sample average

Poisson sampling

Plugging in ZM

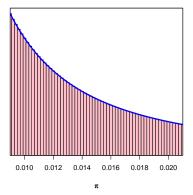
LINKE mode

Pooling types

Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models



- ► L = 1000 cells
- ► L = 2000 cells
- ► L = 5000 cells
- ▶ type density function $g(\pi) \ge 0$

The type density function

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

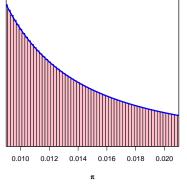
LNRE model

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping up



- ► L = 1000 cells
- ► L = 2000 cells
- ▶ L = 5000 cells
- ▶ type density function $g(\pi) \ge 0$

Number of types w_k with $A \le \pi_k \le B$ = area under curve $g(\pi)$ between A and B

The type density function

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

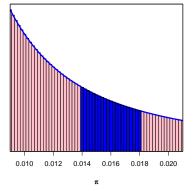
LNRE mode Pooling types

Type density

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up



- ► L = 1000 cells
- ► L = 2000 cells
- ▶ L = 5000 cells
- ▶ type density function $g(\pi) \ge 0$

Number of types w_k with $A \le \pi_k \le B$ = area under curve $g(\pi)$ between A and B

$$=\int_{A}^{B}g(\pi)\,d\pi$$

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types

Type density

Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

$$E[V_m(N)] = \sum_{j=1}^{L} \frac{\left(\frac{N \cdot j}{L}\right)^m}{m!} \cdot e^{-\frac{N \cdot j}{L}} \cdot c_j$$

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

Pooling types

Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

$$\mathrm{E}\big[V_m(N)\big] = \sum_{j=1}^L \frac{\left(\frac{N \cdot j}{L}\right)^m}{m!} \cdot \mathrm{e}^{-\frac{N \cdot j}{L}} \cdot c_j$$

▶ Mathematically, for $L \to \infty$ this converges to an integral, with $j/L \leftrightarrow \pi$ and $c_j \leftrightarrow g(\pi) d\pi$:

LNRE models

Baroni & Evert

Computing expectations Expectation =

sample average
Poisson sampling
Plugging in ZM

Pooling types

Type density

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wranning ur

$E[V_m(N)] = \sum_{j=1}^{L} \frac{\left(\frac{N \cdot j}{L}\right)^m}{m!} \cdot e^{-\frac{N \cdot j}{L}} \cdot c_j$

▶ Mathematically, for $L \to \infty$ this converges to an integral, with $j/L \leftrightarrow \pi$ and $c_j \leftrightarrow g(\pi) d\pi$:

$$E[V_m(N)] = \int_0^1 \frac{(N\pi)^m}{m!} \cdot e^{-N\pi} \cdot g(\pi) d\pi$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types
Type density
I NRF models

Zipt-Mandelbrot as LNRE model

The problem Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping up

$\mathrm{E}\big[V_m(N)\big] = \sum_{j=1}^L \frac{\left(\frac{N \cdot j}{L}\right)^m}{m!} \cdot \mathrm{e}^{-\frac{N \cdot j}{L}} \cdot c_j$

▶ Mathematically, for $L \to \infty$ this converges to an integral, with $j/L \leftrightarrow \pi$ and $c_j \leftrightarrow g(\pi) d\pi$:

$$E[V_m(N)] = \int_0^1 \frac{(N\pi)^m}{m!} \cdot e^{-N\pi} \cdot g(\pi) d\pi$$

▶ Beautiful! :-)

Summary time What did we just do?

LNRE models

Baroni & Evert

Computing
expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE model

Pooling types
Type density
LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wranning III

- ▶ Initial formula was too complex
- ▶ Histogram approximation: simpler but coarse
- ► Get nuances back by increasing number of cells
- ... but this time we end up with a convenient integral that we can compute efficiently!

LNRE models

Baroni & Evert

Computing

expectations

Expectation = sample average

Poisson sampling
Plugging in ZM

_NRE mode

Pooling types Type density

LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

$$E[V_m(N)] = \int_0^1 \frac{(N\pi)^m}{m!} \cdot e^{-N\pi} \cdot g(\pi) d\pi$$
$$E[V(N)] = \int_0^1 (1 - e^{-N\pi}) \cdot g(\pi) d\pi$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling

Plugging in ZM

Pooling types

Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

$$E[V_m(N)] = \int_0^1 \frac{(N\pi)^m}{m!} \cdot e^{-N\pi} \cdot g(\pi) d\pi$$
$$E[V(N)] = \int_0^1 (1 - e^{-N\pi}) \cdot g(\pi) d\pi$$

- \blacktriangleright We can plug in any function g defined on [0,1]
- ▶ Population model expressed in terms of a type density function g is what we call a LNRE model (for Large Number of Rare Events, Baayen 2001)

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

LINKE model

as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

➤ You can't just use *any* old function, of course – *g* must satisfy the following conditions:

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density

LNRE models

as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping ur

➤ You can't just use *any* old function, of course – *g* must satisfy the following conditions:

Do they look familiar to you?

I NRF models

LNRE models

Baroni & Evert

Expectation = sample average Poisson sampling Plugging in ZM

Pooling types

Type density I NRF models

The problem The 7M & f7M

▶ You can't just use any old function, of course – g must satisfy the following conditions:

$$\begin{array}{l}
 g \geq 0 \\
 \int_0^1 \pi \cdot g(\pi) \, d\pi = 1
\end{array}$$

- Do they look familiar to you?
- Moreover, we want to use a function that can be derived from a plausible population model, e.g. Zipf-Mandelbrot

Outline

LNRE models

Baroni & Evert

Computing expectations Expectation = sample average Poisson sampling Plugging in ZM

NRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping up

Computing expectations from the population model

The type density function and LNRE modeling

Zipf-Mandelbrot as LNRE model

The Zipf-Mandelbrot law as a LNRE model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem

Zipf-Mandelbrot The ZM & fZM LNRF models

Wrapping up

▶ We need to reformulate the Zipf-Mandelbrot law in terms of a type density function (to calculate expectations)

The Zipf-Mandelbrot law as a LNRE model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipt-Mandelbro as LNRE model

The problem

Zipf-Mandelbrot The ZM & fZM LNRF models

- ► We need to reformulate the Zipf-Mandelbrot law in terms of a type density function (to calculate expectations)
- ► ZM has 2 parameters (and fZM has 3 parameters)
 - → type density function will also have parameters
 - same number of parameters, but different interpretation
 - cannot use parameter values of the population model!

The Zipf-Mandelbrot law as a LNRE model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

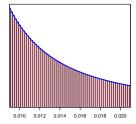
Pooling types Type density LNRE models

Zipt-Mandelbro as LNRE model

The problem

Zipf-Mandelbrot The ZM & fZM

- ► We need to reformulate the Zipf-Mandelbrot law in terms of a type density function (to calculate expectations)
- ► ZM has 2 parameters (and fZM has 3 parameters)
 - → type density function will also have parameters
 - same number of parameters, but different interpretation
 - cannot use parameter values of the population model!
- Goal is to find a function $g(\pi)$ that corresponds to a very fine histogram of the ZM (or fZM) type population



Zipf-Mandelbrot as a LNRE model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem

Zipf-Mandelbrot
The ZM & fZM

Wrapping up

Find a function $g(\pi)$ that matches a very fine histogram of the Zipf-Mandelbrot law (as a population model)

Zipf-Mandelbrot as a LNRE model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipt-Mandelbro as LNRE model

The problem

Zipf-Mandelbrot The ZM & fZM I NRF models

- Find a function $g(\pi)$ that matches a very fine histogram of the Zipf-Mandelbrot law (as a population model)
- ► This could be done directl by trial and error for every possible combination of ZM parameters *a* and *b*: **ugly**
 - we don't even know which family of functions to use
 - there must be a better way!

Zipf-Mandelbrot as a LNRE model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipt-Mandelbro as LNRE mode

The problem

Zipf-Mandelbrot The ZM & fZM I NRF models

- Find a function $g(\pi)$ that matches a very fine histogram of the Zipf-Mandelbrot law (as a population model)
- ► This could be done directl by trial and error for every possible combination of ZM parameters *a* and *b*: **ugly**
 - ▶ we don't even know which family of functions to use
 - there must be a better way!
- ▶ Luckily, there is an analytical solution

Summary of the next few steps ... for the less mathematically inclined among us

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem

Zipf-Mandelbrot The ZM & fZM

Wrapping up

▶ Plug together $g(\pi)$ and the ZM law for π_k

Summary of the next few steps . . .

for the less mathematically inclined among us

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem

Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ Plug together $g(\pi)$ and the ZM law for π_k
- Math happens

Summary of the next few steps . . .

for the less mathematically inclined among us

LNRE models

Baroni & Evert

Computing expectations Expectation =

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density I NRF models

Zipf-Mandelbro

The problem

Zipf-Mandelbrot The ZM & fZM I NRF models

- ▶ Plug together $g(\pi)$ and the ZM law for π_k
- Math happens
- ▶ Out comes ZM formulated in terms of $g(\pi)$

Summary of the next few steps . . .

for the less mathematically inclined among us

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling Plugging in ZM

LINKE model

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE model

The problem

Zipf-Mandelbrot The ZM & fZM I NRF models

- ▶ Plug together $g(\pi)$ and the ZM law for π_k
- Math happens
- ▶ Out comes ZM formulated in terms of $g(\pi)$
- ► And now . . . another detour (sorry!)

Meet G, the type distribution

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem

Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wranning ur

► There is a way to derive ZM's g analytically ... but it requires another detour

Meet *G*, the type distribution

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling Plugging in ZM

LINKE models

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem

Type distribution Zipf-Mandelbrot The ZM & fZM

- ► There is a way to derive ZM's g analytically ... but it requires another detour
- ▶ We can easily calculate the number of types with $\pi \ge \rho$, which we call the **type distribution** $G(\rho)$

Meet *G*, the type distribution

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling

LNRE models
Pooling types
Type density
LNRE models

Plugging in ZM

Zipf-Mandelbrot as LNRE model

The problem

Type distribution

Zipf-Mandelbrot

The ZM & fZM

Wrapping up

► There is a way to derive ZM's g analytically ... but it requires another detour

- ▶ We can easily calculate the number of types with $\pi \ge \rho$, which we call the **type distribution** $G(\rho)$
- According to the ZM law, for $\rho = \pi_k$ there are exactly k types with $\pi \ge \rho$ (viz. the types w_1, \ldots, w_k), i.e.:

$$G(\pi_k) = k$$

Meet *G*, the type distribution

LNRE models

Baroni & Evert

Computing
expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

Pooling types
Type density
I NRF models

Zipf-Mandelbro

s LNRE mode

Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping ur

► There is a way to derive ZM's g analytically ... but it requires another detour

- ▶ We can easily calculate the number of types with $\pi \ge \rho$, which we call the **type distribution** $G(\rho)$
- According to the ZM law, for $\rho = \pi_k$ there are exactly k types with $\pi \ge \rho$ (viz. the types w_1, \ldots, w_k), i.e.:

$$G(\pi_k) = k$$

▶ From this equation we will be able to work out *G*

Meet *G*, the type distribution

LNRE models

Baroni & Evert

Computing
expectations
Expectation = sample average
Poisson sampling

Pooling types
Type density
LNRF models

Plugging in ZM

Zipf-Mandelbro as LNRE mode

The problem

Type distribution

Zipf-Mandelbrot The ZM & fZM LNRE models

- ► There is a way to derive ZM's g analytically ... but it requires another detour
- ▶ We can easily calculate the number of types with $\pi \ge \rho$, which we call the **type distribution** $G(\rho)$
- According to the ZM law, for $\rho = \pi_k$ there are exactly k types with $\pi \ge \rho$ (viz. the types w_1, \ldots, w_k), i.e.:

$$G(\pi_k) = k$$

- From this equation we will be able to work out G
- ▶ With the help of G we can then derive the LNRE formulation of ZM in terms of a type density function g
 - ▶ NB: upper case G stands for the type distribution, lower case g for the type density function (standard notation)

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mod

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem

Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

$$G(\rho) = \int_{\rho}^{1} g(\pi) \, d\pi$$

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson samplin Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem

Type distribution Zipf-Mandelbrot The ZM & fZM

Wrapping up

$G(\rho) = \int_{\rho}^{1} g(\pi) \, d\pi$

- ▶ $\int_A^B g(\pi) d\pi$ = number of types with $A \le \pi_k \le B$
- $G(\rho)$ = number of types with $\rho \leq \pi_k$
- ▶ there are no types with $\pi_k > 1$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The prob

Type distribution Zipf-Mandelbrot The ZM & fZM

$$G(\rho) = \int_{\rho}^{1} g(\pi) \, d\pi$$

- ▶ $\int_A^B g(\pi) d\pi$ = number of types with $A \le \pi_k \le B$
- $G(\rho)$ = number of types with $\rho \leq \pi_k$
- ▶ there are no types with $\pi_k > 1$
- ightharpoonup G' = -g, or equivalently g = -G'

LNRE models

Baroni & Evert

Computing expectations Expectation =

sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The ----

Type distribution Zipf-Mandelbrot The ZM & fZM

Wrapping up

$G(\rho) = \int_{\rho}^{1} g(\pi) \, d\pi$

- ▶ $\int_A^B g(\pi) d\pi$ = number of types with $A \le \pi_k \le B$
- $G(\rho)$ = number of types with $\rho \leq \pi_k$
- there are no types with $\pi_k > 1$
- ightharpoonup G' = -g, or equivalently g = -G'
 - ▶ This is the second fundamental theorem of calculus

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbro as LNRE mode

as LNRE mode The problem

Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping up

$G(\rho) = \int_{\rho}^{1} g(\pi) \, d\pi$

- ▶ $\int_A^B g(\pi) d\pi$ = number of types with $A \le \pi_k \le B$
- $G(\rho)$ = number of types with $\rho \leq \pi_k$
- there are no types with $\pi_k > 1$
- \hookrightarrow G' = -g, or equivalently g = -G'
- ▶ This is the second fundamental theorem of calculus
- Intuitively:
 - ▶ If you increase ρ , say from ρ to $\rho + x$, G decreases (fewer types → minus sign)
 - ► The amount by which it decreases (number of types between ρ and $\rho + x$) is proportional to $g(\rho)$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem Type distribution **Zipf-Mandelbrot** The ZM & fZM

Wrapping ur

According to the ZM law, for $\rho = \pi_k$ there are exactly k types with $\pi \ge \rho$ (viz. the types w_1, \ldots, w_k), i.e.:

$$G(\pi_k)=k$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping ur

According to the ZM law, for $\rho = \pi_k$ there are exactly k types with $\pi \ge \rho$ (viz. the types w_1, \ldots, w_k), i.e.:

$$G(\pi_k) = k$$

▶ Insert ZM formula for the type probabilities π_k :

$$G\left(\frac{C}{(k+b)^a}\right) = k$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

According to the ZM law, for $\rho = \pi_k$ there are exactly k types with $\pi \ge \rho$ (viz. the types w_1, \ldots, w_k), i.e.:

$$G(\pi_k) = k$$

▶ Insert ZM formula for the type probabilities π_k :

$$G\left(\frac{C}{(k+b)^a}\right) = k$$

- \square Find a function G that satisfies this equation
 - err . . .

LNRE models

Baroni & Evert

Computing

Expectation = sample average Poisson sampling Plugging in ZM

LIVICE IIIOGE

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

UNRE models

$$G\left(\frac{C}{(k+b)^a}\right) = k$$

LNRE models

Baroni & Evert

Computing

Expectation = sample average Poisson sampling Plugging in ZM

_NRE mode

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot

The ZM & fZM LNRE models

$$G\left(\frac{C}{(k+b)^a}\right) = k$$

▶ ZM:
$$k \mapsto \pi_k = \frac{C}{(k+b)^a} \iff G: \pi_k \mapsto k$$

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipt-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping up

$G\left(\frac{C}{(k+b)^a}\right) = k$

- ► ZM: $k \mapsto \pi_k = \frac{C}{(k+b)^3} \iff G: \pi_k \mapsto k$
- ▶ To get back from π_k to k, all we have to do is to solve the Zipf-Mandelbrot equation for k, obtaining:

$$k = C^{\frac{1}{a}} \cdot (\pi_k)^{-\frac{1}{a}} - b$$

LNRE models

Baroni & Evert

Computing

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mod

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping up

$G\left(\frac{C}{(k+b)^a}\right) = k$

- ▶ ZM: $k \mapsto \pi_k = \frac{C}{(k+b)^a} \iff G: \pi_k \mapsto k$
- ▶ To get back from π_k to k, all we have to do is to solve the Zipf-Mandelbrot equation for k, obtaining:

$$k = C^{\frac{1}{a}} \cdot (\pi_k)^{-\frac{1}{a}} - b$$

▶ We can now define *G* by

$$G(\rho) := C^{\frac{1}{s}} \cdot \rho^{-\frac{1}{s}} - b$$

and have found a function that satisfies $G(\pi_k) = k$

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem Type distribution

Zipf-Mandelbrot The ZM & fZM LNRE models

$$g(\pi) = -G'(\pi)$$
 with $G(\pi) = C^{\frac{1}{a}} \cdot \pi^{-\frac{1}{a}} - b$

LNRE models

Baroni & Evert

$$g(\pi) = -G'(\pi)$$
 with $G(\pi) = C^{\frac{1}{a}} \cdot \pi^{-\frac{1}{a}} - b$

Expectations

Expectation = sample average

Poisson sampling

Plugging in ZM

LNDE

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

LNRE models
Wrapping up

ot el

(trivial) math happens

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem Type distribution **Zipf-Mandelbrot** The ZM & fZM

Wrapping up

$$g(\pi) = -G'(\pi)$$
 with $G(\pi) = C^{\frac{1}{a}} \cdot \pi^{-\frac{1}{a}} - b$

(trivial) math happens

$$g(\pi) = \left(C^{\frac{1}{a}}/a\right) \cdot \pi^{-\frac{1}{a}-1}$$

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average
Poisson sampling
Plugging in ZM

LIVIVE IIIOGE

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

$g(\pi) = -G'(\pi)$ with $G(\pi) = C^{\frac{1}{a}} \cdot \pi^{-\frac{1}{a}} - b$

(trivial) math happens

$$g(\pi) = (C^{\frac{1}{a}}/a) \cdot \pi^{-\frac{1}{a}-1}$$

► Simplify by renaming constants:

$$g(\pi) = C^* \cdot \pi^{-\alpha - 1}$$

LNRE models

Baroni & Evert

expectations Expectation =

sample average Poisson sampling Plugging in ZM

LIVIL IIIOU

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping ur

$$g(\pi) = -G'(\pi)$$
 with $G(\pi) = C^{\frac{1}{a}} \cdot \pi^{-\frac{1}{a}} - b$

$$g(\pi) = (C^{\frac{1}{a}}/a) \cdot \pi^{-\frac{1}{a}-1}$$

Simplify by renaming constants:

$$g(\pi) = C^* \cdot \pi^{-\alpha - 1}$$

ho $\alpha = \frac{1}{a}$ replaces ZM's a as "slope" parameter $(0 < \alpha < 1)$

LNRE models

Baroni & Evert

Computing expectation

Expectations

Expectation = sample average

Poisson sampling

Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

as LNRE mode

The problem Type distribution **Zipf-Mandelbrot** The ZM & fZM LNRE models

Wrapping up

$$g(\pi) = -G'(\pi)$$
 with $G(\pi) = C^{\frac{1}{a}} \cdot \pi^{-\frac{1}{a}} - b$

(trivial) math happens

$$g(\pi) = (C^{\frac{1}{a}}/a) \cdot \pi^{-\frac{1}{a}-1}$$

► Simplify by renaming constants:

$$g(\pi) = C^* \cdot \pi^{-\alpha - 1}$$

- $ho \ lpha = rac{1}{a}$ replaces ZM's a as "slope" parameter (0 < lpha < 1)
- C* is normalizing constant determined from constraint

$$\int_0^1 \pi \cdot g(\pi) \, d\pi = 1$$

LNRE models

Baroni & Evert

Computing

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

 \blacktriangleright We are not quite done yet: we lost one parameter (b)

$$g(\pi) = C^* \cdot \pi^{-\alpha - 1}$$

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping ur

▶ We are not quite done yet: we lost one parameter (b)

$$g(\pi) = C^* \cdot \pi^{-\alpha - 1}$$

According to the Zipf-Mandelbrot law, there are no types with $\pi > \pi_1$ (where typically $\pi_1 \ll 1$), but $g(\pi = 1) > 0$ no matter what value α takes

LNRE models

Baroni & Evert

Computing expectations Expectation = sample average Poisson sampling

Plugging in ZM LNRE models

Pooling types Type density I NRF models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping u

 \blacktriangleright We are not quite done yet: we lost one parameter (b)

$$g(\pi) = C^* \cdot \pi^{-\alpha - 1}$$

- According to the Zipf-Mandelbrot law, there are no types with $\pi > \pi_1$ (where typically $\pi_1 \ll 1$), but $g(\pi = 1) > 0$ no matter what value α takes
- ▶ We need an "upper threshold" parameter
- Obvious choice: π_1 , but for mathematical reasons the threshold parameter B close rather than equal to π_1

LNRE models

Baroni & Evert

Computing expectations Expectation = sample average Poisson sampling

Plugging in ZM

Pooling types Type density I NRF models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping u

 \blacktriangleright We are not quite done yet: we lost one parameter (b)

$$g(\pi) = C^* \cdot \pi^{-\alpha - 1}$$

- According to the Zipf-Mandelbrot law, there are no types with $\pi > \pi_1$ (where typically $\pi_1 \ll 1$), but $g(\pi = 1) > 0$ no matter what value α takes
- ▶ We need an "upper threshold" parameter
- Obvious choice: π_1 , but for mathematical reasons the threshold parameter B close rather than equal to π_1
- Surprise, surprise: $B = \frac{a-1}{b}$
 - b is back!

The LNRE ZM model

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

$g(\pi) = \begin{cases} C \cdot \pi^{-\alpha - 1} & 0 \le \pi \le B \\ 0 & \pi > B \end{cases}$

- ▶ shape parameter $0 < \alpha < 1$ ("slope")
- (upper) cutoff parameter $0 < B \le 1$

$$C = \frac{1 - \alpha}{B^{1 - \alpha}}$$

relation to Zipf-Mandelbrot law:

$$a = \frac{1}{\alpha}$$
 $S = \infty$ $b = \frac{1 - \alpha}{R}$

Expectations under the LNRE ZM model

LNRE models

Baroni & Evert

Computing

Expectation = sample average
Poisson sampling
Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

$$E[V_m(N)] = \int_0^1 \frac{(N\pi)^m}{m!} e^{-N\pi} g(\pi) d\pi$$

$$= \frac{C}{m!} \cdot \int_0^B (N\pi)^m e^{-N\pi} \pi^{-\alpha - 1} d\pi$$

$$= \dots = \frac{C}{m!} \cdot N^\alpha \cdot \gamma(m - \alpha, NB)$$

Expectations under the LNRE ZM model

LNRE models

Baroni & Evert

Computing expectations

Expectation =

sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wranning ur

$$E[V_m(N)] = \int_0^1 \frac{(N\pi)^m}{m!} e^{-N\pi} g(\pi) d\pi$$

$$= \frac{C}{m!} \cdot \int_0^B (N\pi)^m e^{-N\pi} \pi^{-\alpha - 1} d\pi$$

$$= \dots = \frac{C}{m!} \cdot N^\alpha \cdot \gamma(m - \alpha, NB)$$

► The (lower) incomplete **Gamma function** γ is a so-called **special function** \rightarrow well-understood by mathematicians

Expectations under the LNRE ZM model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

$E[V_m(N)] = \int_0^1 \frac{(N\pi)^m}{m!} e^{-N\pi} g(\pi) d\pi$ $= \frac{C}{m!} \cdot \int_0^B (N\pi)^m e^{-N\pi} \pi^{-\alpha - 1} d\pi$ $= \dots = \frac{C}{m!} \cdot N^\alpha \cdot \gamma(m - \alpha, NB)$

- The (lower) incomplete Gamma function γ is a so-called special function → well-understood by mathematicians
- $ightharpoonup \gamma$ and $m! = \Gamma(m+1)$ can be computed efficiently
- This and several similar properties make the LNRE formulations of ZM and fZM convient and robust

The LNRE fZM model

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE Mode

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

$$g(\pi) = \begin{cases} C \cdot \pi^{-\alpha - 1} & A \le \pi \le B \\ 0 & \text{otherwise} \end{cases}$$

- shape parameter $0 < \alpha < 1$ ("slope")
- ▶ cutoff parameters $0 < A < B \le 1$
 - ▶ fZM with A = 0 → ZM model
- $C = \frac{1 \alpha}{B^{1 \alpha} A^{1 \alpha}}$
- ► relation to Zipf-Mandelbrot law:

$$a = \frac{1}{\alpha}$$

$$S = \frac{1 - \alpha}{\alpha} \cdot \frac{A^{-\alpha} - B^{-\alpha}}{B^{1-\alpha} - A^{1-\alpha}}$$

$$b = \frac{C}{B^{\alpha}}$$

Outline

LNRE models

Baroni & Evert

Computing expectations from the population mode

expectations

Expectation = sample average

Poisson sampling

Plugging in ZM

Computing

The type density function and LNRE modeling

LNRE model
Pooling types

Zipf-Mandelbrot as LNRE model

Type density LNRE models

Wrapping up

Zipf-Mandelbrot as LNRE model

The problem Type distribution Zipf-Mandelbrot The ZM & fZM LNRE models

Wrapping up

LNRE models

Baroni & Evert

Computing

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

▶ Wake up! Math is done

Wrapping up

LNRE models

Baroni & Evert

Computing expectations Expectation = sample average

Poisson sampling Plugging in ZM

LIVINE MODE

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ▶ Wake up! Math is done
- ▶ In principle, you can forget about all this and use LNRE models as black boxes (says Marco)

Wrapping up

LNRE models

Baroni & Evert

Computing expectations Expectation = sample average Poisson sampling

Plugging in ZM LNRE models

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ▶ Wake up! Math is done
- ► In principle, you can forget about all this and use LNRE models as black boxes (says Marco)
- However...

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE Mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

► LNRE models: mathematical apparatus with ultimate goal to derive expectations for *V* and frequency spectrum *V*_m of extremely type-rich populations

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ► LNRE models: mathematical apparatus with ultimate goal to derive expectations for *V* and frequency spectrum *V*_m of extremely type-rich populations
- ► The components of a LNRE model:

LNRE models

Baroni & Evert

Computing expectations Expectation =

sample average
Poisson sampling
Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipt-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ► LNRE models: mathematical apparatus with ultimate goal to derive expectations for *V* and frequency spectrum *V*_m of extremely type-rich populations
- ▶ The components of a LNRE model:
 - Population model, expressed as family of type density functions (determines overall shape of distribution)

LNRE models

Baroni & Evert

Computing expectations

Expectation =

sample average Poisson sampling Plugging in ZM

Pooling types

Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ► LNRE models: mathematical apparatus with ultimate goal to derive expectations for *V* and frequency spectrum *V*_m of extremely type-rich populations
- ► The components of a LNRE model:
 - Population model, expressed as family of type density functions (determines overall shape of distribution)
 - Parameters of the type density function (determine how steep the curve is and other aspects of its shape)

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average

Poisson sampling

Plugging in ZM

LNRE models

Pooling types

Type density

Zipf-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRF models

- ► LNRE models: mathematical apparatus with ultimate goal to derive expectations for *V* and frequency spectrum *V*_m of extremely type-rich populations
- ► The components of a LNRE model:
 - Population model, expressed as family of type density functions (determines overall shape of distribution)
 - Parameters of the type density function (determine how steep the curve is and other aspects of its shape)
 - Formulas to compute **expectations** for V and spectrum elements V_m in samples of arbitrary size N (we used Poisson sampling, but there are other options)

LNRE models

Baroni & Evert

Computing expectations Expectation =

sample average Poisson sampling Plugging in ZM

LINKE Mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

Wrapping up

► In order to apply LNRE model to real-life data you need a way to estimate model parameters (typically by matching expected and observed frequency spectrum)

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipf-Mandelbro

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ In order to apply LNRE model to real-life data you need a way to estimate model parameters (typically by matching expected and observed frequency spectrum)
- Aspects you might actively intervene in:
 - choose a LNRE model
 - details of parameter estimation (cost function etc.)

LNRE models

Baroni & Evert

Computing expectation

Expectation = sample average Poisson sampling Plugging in ZM

LINKE mode

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE mode

Pooling types Type density I NRF models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

Wrapping up

► spc <- read.spc("Brown100k.spc")

square load observed frequency spectrum from file

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ▶ model <- lnre("zm", spc)
 - pick ZM model and estimate parameters from spectrum

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson sampling Plugging in ZM

LNRE model

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM

- ► spc <- read.spc("Brown100k.spc")
- load observed frequency spectrum from file
- ▶ model <- lnre("zm", spc)
 - pick ZM model and estimate parameters from spectrum
- ▶ summary(model)
 - displays model parameters & goodness-of-fit

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson samplin Plugging in ZM

LNRE model

Pooling types Type density LNRE models

Zipt-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ▶ spc <- read.spc("Brown100k.spc")</p>
 □ load observed frequency spectrum from file
- load observed frequency spectrum from file
- ▶ model <- lnre("zm", spc)
 - pick ZM model and estimate parameters from spectrum
- ▶ summary(model)
 - displays model parameters & goodness-of-fit
- ► EV(model, 1e+6)
 - lacktriangledown expected V at 1 million word sample size

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson samplin Plugging in ZM

LNRE model

Pooling types Type density LNRE models

Zipf-Mandelbro as LNRE mode

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
LNRE models

- ► model <- lnre("zm", spc)
 - pick ZM model and estimate parameters from spectrum
- ► summary(model)
 - displays model parameters & goodness-of-fit
- ► EV(model, 1e+6)
 - ightharpoonup expected V at 1 million word sample size
- ▶ spc.exp <- lnre.spc(model, 1e+6)
 - expected spectrum at 1 million word sample size

LNRE models

Baroni & Evert

Computing expectations

Expectation = sample average Poisson samplin Plugging in ZM

LNRE model

Pooling types Type density LNRE models

Zipf-Mandelbrot as LNRE model

The problem
Type distribution
Zipf-Mandelbrot
The ZM & fZM
I NRF models

- spc <- read.spc("Brown100k.spc")

 load observed frequency spectrum from file</pre>
- ► model <- lnre("zm", spc)

 Reprint 7M model and estimate parameters from spectri
- pick ZM model and estimate parameters from spectrum
- summary(model)

 displays model parameters & goodness-of-fit
- ► EV(model, 1e+6)
 - lacksquare expected V at 1 million word sample size
- ▶ plot(spc.exp)
 - plot expected spectrum