

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Counting Words: Pre-Processing and Non-Randomness

Marco Baroni & Stefan Evert

Málaga, 11 August 2006

Pre-processing

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- ▶ IT IS IMPORTANT!!! (Evert and Lüdeling 2001)
- ▶ Automated pre-processing often necessary (13,850 types begin with re- in BNC, 103,941 types begin with ri- in itWaC)
- ▶ We can rely on:
 - ► POS tagging
 - Lemmatization
 - ► Pattern matching heuristics (e.g., candidate prefixed form must be analyzable as *PRE+VERB*, with *VERB* independently attested in corpus)
- ► However...

Outline

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Pre-Processing

Non-Randomness

The End

The problem with low frequency words

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models

- ► Automated tools will tend to have lowest performance on low frequency forms:
 - Statistical tools will suffer from lack of relevant training data
 - Manually-crafted tools will probably lack the relevant resources
- ► Problems in both directions (under- and overestimation of hapax counts)
- ▶ Part of the more general "95% performance" problem

Underestimation of hapaxes

Pre-processing and non-randomness Baroni & Evert

Pre-Processing

Non-Randomness

The End

► The Italian TreeTagger lemmatizer is lexicon-based; out-of-lexicon words (e.g., productively formed words containing a prefix) are lemmatized as UNKNOWN

- ▶ No prefixed word with dash (ri-cadere) is in lexicon
- ► Writers are more likely to use dash to mark transparent morphological structure

Productivity of *ri*-with and without an extended lexicon

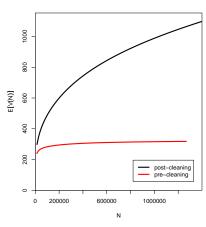
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



Overestimation of hapaxes

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomnes

The End

▶ "Noise" generates hapax legomena

- ► The Italian TreeTagger thinks that dashed expressions containing pronoun-like strings are pronouns
- $\,\blacktriangleright\,$ Dashed strings can be anything, including full sentences
- ► This creates a lot of pseudo-pronoun hapaxes: tu-tu, parapaponzi-ponzi-pò, altri-da-lui-simili-a-lui

Productivity of the pronoun class before and after cleaning

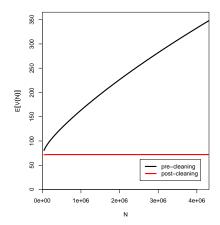
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



\mathscr{P} (and V) with/without correct post-processing

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

▶ With:

class	V	V_1	N	P
ri-	1098	346	1,399,898	0.00025
pronouns	72	0	4,313,123	0

▶ Without:

class	V	V_1	N	P
ri-	318	8	1,268,244	0.000006
pronouns	348	206	4,314,381	0.000048

Outline

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Non-Randomness

A final word on pre-processing

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

► IT IS IMPORTANT

▶ Often, major roadblock of lexical statistics investigations

Non-randomness

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

► LNRE modeling based on assumption that our corpora/datasets are **random** samples from the population

- ► This is obviously not the case
- ▶ Can we pretend that a corpus is random?
- ▶ What are the consequences of non-randomness?

A Brown-sized random sample from a ZM population estimated with Brown

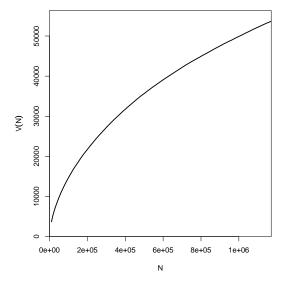
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



The real Brown

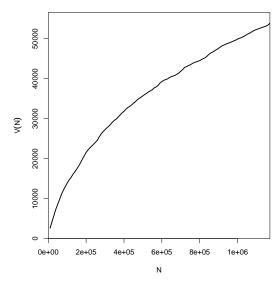
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



Where does non-randomness come from?

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

► Syntax?

- ▶ the the should be most frequent English bigram
- ▶ If the problem is due to syntax, randomizing by sentence will not get rid of it (Baayen 2001, ch. 5)

The Brown randomized by sentence

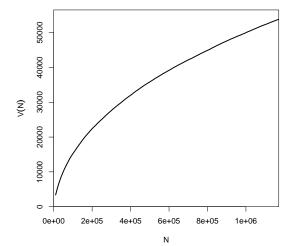
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



Where does non-randomness come from?

Pre-processing and non-randomness Baroni & Evert

30.0... a 210...

Pre-Processing
NonRandomness

The End

- ► Not syntax (syntax has short span effect; *the* counts for 10k intervals are OK)
- ► **Underdispersion** of content-rich words
- ▶ The chance of two Noriegas is closer to $\pi/2$ than π^2 (Church 2000)
- ▶ *diethylstilbestrol* occurs 3 times in Brown, all in same document (recommendations on feed additives)
- Underdispersion will lead to serious underestimation of rare type count
- ▶ fZM estimated on Brown predicts S = 115,539 in English

Underestimating types Extrapolating Brown VGC with fZM

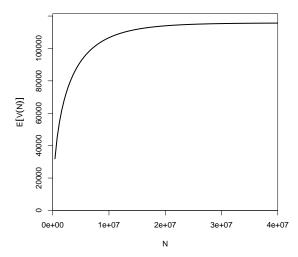
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



Assessing extrapolation quality

Pre-processing and non-randomness

Baroni & Evert

Non-Randomness

The Er

► We have no way to assess goodness of fit of extrapolation from corpus to larger sample from same population

- ► However, we can estimate models on subset of available data, and extrapolate to full corpus size (Evert and Baroni 2006)
- ▶ I.e., use corpus as our population, sample from it

Extrapolation from a **random** sample of 250k Brown tokens

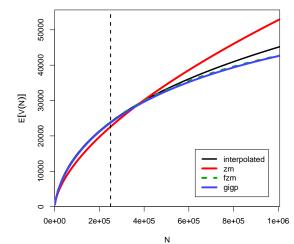
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



Goodness of fit to spectrum elements

Based on multivariate chi-squared statistic

Pre-processing and non-randomness Baroni & Evert

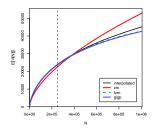
Pre-Processing

Non-Randomness

The End

	estimation size		max extrapolation size			
model	X2	df	р	X2	df	р
ZM	7,856	14	≪ 0.001	35, 346	16	≪ 0.001
fZM	539	13	$\ll 0.001$	4, 525	16	$\ll 0.001$
GIGP	597	13	$\ll 0.001$	3,449	16	$\ll 0.001$

Compare to V fit:



Goodness of fit to spectrum elements

Based on multivariate chi-squared statistic

Pre-processing				
and				
non-randomness				
Baroni & Evert				

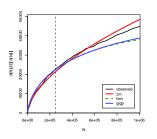
Pre-Processing

Non-Randomness

The End

	estimation size		max extrapolation size			
model	X2	df	р	X2	df	р
ZM	8,066	14	≪ 0.001	33,6766	16	≪ 0.001
fZM	1,011	13	$\ll 0.001$	17, 559	16	$\ll 0.001$
GIGP	587	13	$\ll 0.001$	7, 815	16	$\ll 0.001$

Compare to V fit:



Extrapolation from first 250k tokens in corpus

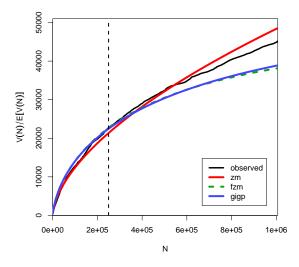
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



The corpus as a (non-)random sample

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing
NonRandomness

The End

▶ In our experiment, we had access to full population (the Brown) and could take random sample from it

- ▶ In real life, full corpus *is* our sample from the population (e.g., "English", an author's mental lexicon, all words generated by a wfp)
- ► If it is not random, there is nothing we can do about it (randomizing the sample will not help!)

What can we do?

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The En

- ► Abandon lexical statistics
- ▶ Live with it
- ► Re-define the population
- ► Try to account for underdispersion when computing the models (will get mathematically very complicated, but see Baayen 2001, ch. 5)

Outline

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomnes

The End

The End

Not always that bad Our Mutual Friend

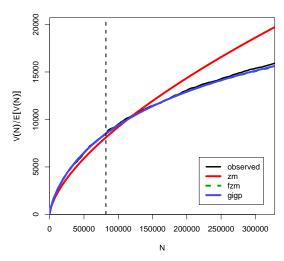
Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End



What we have done

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

▶ **Motivation**: studying distribution and *V* growth rate of type-rich populations (sample captures only small proportion of types in population)

- ► LNRE modeling:
 - ▶ **Population model** with limited number of parameters (e.g., ZM), expressed in terms of type density function
 - ► Equations to calculate expected V and frequency spectrum in random samples of arbitrary size using population model
 - ► **Estimation** of population parameters via fit of expected elements to observed frequency spectrum
- ▶ zipfR package to apply LNRE modeling
- ▶ Problems

What we (and perhaps some of you?) would like to do next

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- ► Study (and deal with) non-randomness
- ▶ Better parameter estimation
- ► Improve zipfR (any feature request?)
- ▶ Use LNRE modeling in applications, e.g.:
 - ► Good-Turing-style estimation
 - ► Productivity beyond morphology
 - ▶ Better features for machine learning
 - Mixture models

That's All, Folks!

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

THE END