

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Counting Words: Pre-Processing and Non-Randomness

Marco Baroni & Stefan Evert

Málaga, 11 August 2006

Outline

Pre-processing and non-randomness Baroni & Evert	Pre-Processing
Pre-Processing	Non-Randomness
Randomness	
The End	The End

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

► IT IS IMPORTANT !!! (Evert and Lüdeling 2001)

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- ► IT IS IMPORTANT!!! (Evert and Lüdeling 2001)
- Automated pre-processing often necessary (13,850 types begin with *re-* in BNC, 103,941 types begin with *ri-* in itWaC)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomnes

The End

- ► IT IS IMPORTANT!!! (Evert and Lüdeling 2001)
- Automated pre-processing often necessary (13,850 types begin with *re-* in BNC, 103,941 types begin with *ri-* in itWaC)
- ► We can rely on:
 - POS tagging
 - Lemmatization
 - Pattern matching heuristics (e.g., candidate prefixed form must be analyzable as *PRE+VERB*, with *VERB* independently attested in corpus)

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- ► IT IS IMPORTANT!!! (Evert and Lüdeling 2001)
- Automated pre-processing often necessary (13,850 types begin with *re-* in BNC, 103,941 types begin with *ri-* in itWaC)
- ► We can rely on:
 - POS tagging
 - Lemmatization
 - Pattern matching heuristics (e.g., candidate prefixed form must be analyzable as *PRE+VERB*, with *VERB* independently attested in corpus)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

However...

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models
- Automated tools will tend to have lowest performance on low frequency forms:
 - Statistical tools will suffer from lack of relevant training data

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

 Manually-crafted tools will probably lack the relevant resources

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models
- Automated tools will tend to have lowest performance on low frequency forms:
 - Statistical tools will suffer from lack of relevant training data

- Manually-crafted tools will probably lack the relevant resources
- Problems in both directions (under- and overestimation of hapax counts)

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models
- Automated tools will tend to have lowest performance on low frequency forms:
 - Statistical tools will suffer from lack of relevant training data

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Manually-crafted tools will probably lack the relevant resources
- Problems in both directions (under- and overestimation of hapax counts)
- ▶ Part of the more general "95% performance" problem

Underestimation of hapaxes

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- The Italian TreeTagger lemmatizer is lexicon-based; out-of-lexicon words (e.g., productively formed words containing a prefix) are lemmatized as UNKNOWN
- ▶ No prefixed word with dash (*ri-cadere*) is in lexicon
- Writers are more likely to use dash to mark transparent morphological structure

Productivity of *ri*with and without an extended lexicon

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ のへで

Overestimation of hapaxes

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- "Noise" generates hapax legomena
- The Italian TreeTagger thinks that dashed expressions containing pronoun-like strings are pronouns
- Dashed strings can be anything, including full sentences

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

This creates a lot of pseudo-pronoun hapaxes: tu-tu, parapaponzi-ponzi-pò, altri-da-lui-simili-a-lui

Productivity of the pronoun class before and after cleaning

◆ロト ◆昼 ト ◆臣 ト ◆臣 - の々で

\mathscr{P} (and V) with/without correct post-processing

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

class	V	V_1	N	P
ri-	1098	346	1,399,898	0.00025
pronouns	72	0	4,313,123	0

Without:

With:

class	V	V_1	N	P
ri-	318	8	1,268,244	0.000006
pronouns	348	206	4,314,381	0.000048

A final word on pre-processing

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

A final word on pre-processing

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- IT IS IMPORTANT
- Often, major roadblock of lexical statistics investigations

Outline

Pre-processing and non-randomness Baroni & Evert	Pre-Processing
Pre-Processing	Non-Randomness
Non- Randomness	
The End	The End

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 LNRE modeling based on assumption that our corpora/datasets are random samples from the population

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 LNRE modeling based on assumption that our corpora/datasets are random samples from the population

This is obviously not the case

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 LNRE modeling based on assumption that our corpora/datasets are random samples from the population

- This is obviously not the case
- Can we pretend that a corpus is random?

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- LNRE modeling based on assumption that our corpora/datasets are random samples from the population
- This is obviously not the case
- Can we pretend that a corpus is random?
- What are the consequences of non-randomness?

A Brown-sized random sample from a ZM population estimated with Brown

The real Brown

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

► Syntax?

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

▶ *the the* should be most frequent English bigram

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Syntax?
- the the should be most frequent English bigram
- If the problem is due to syntax, randomizing by sentence will not get rid of it (Baayen 2001, ch. 5)

The Brown randomized by sentence

Baroni & Evert

Non-Randomness

The End

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 Not syntax (syntax has short span effect; *the* counts for 10k intervals are OK)

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Not syntax (syntax has short span effect; the counts for 10k intervals are OK)
- Underdispersion of content-rich words
- The chance of two Noriegas is closer to π/2 than π² (Church 2000)
- diethylstilbestrol occurs 3 times in Brown, all in same document (recommendations on feed additives)

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Not syntax (syntax has short span effect; the counts for 10k intervals are OK)
- Underdispersion of content-rich words
- The chance of two Noriegas is closer to π/2 than π² (Church 2000)
- diethylstilbestrol occurs 3 times in Brown, all in same document (recommendations on feed additives)
- Underdispersion will lead to serious underestimation of rare type count
- Figure fZM estimated on Brown predicts S = 115,539 in English

Underestimating types Extrapolating Brown VGC with fZM

Baroni & Evert

Non-

Assessing extrapolation quality

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- We have no way to assess goodness of fit of extrapolation from corpus to larger sample from same population
- However, we can estimate models on subset of available data, and extrapolate to full corpus size (Evert and Baroni 2006)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▶ I.e., use corpus as our population, sample from it

Extrapolation from a **random** sample of 250k Brown tokens

Baroni & Evert

Non-Randomness

The End

990

Goodness of fit to spectrum elements

Based on multivariate chi-squared statistic

Pre-processing and non-randomness		estimation size			max ext	rapol	ation size
Baroni & Evert	model	X2	df	р	X2	df	р
Pro Processing	ZM	7,856	14	$\ll 0.001$	35, 346	16	$\ll 0.001$
Non-	fZM	539	13	$\ll 0.001$	4, 525	16	$\ll 0.001$
Randomness	GIGP	597	13	$\ll 0.001$	3,449	16	$\ll 0.001$
The Fuel							

Compare to V fit:

Extrapolation from first 250k tokens in corpus

Pre-processing and non-randomness

Baroni & Evert

Non-Randomness

Goodness of fit to spectrum elements

Based on multivariate chi-squared statistic

Pre-processing and non-randomness		estimation size			max extr	apola	ation size
Baroni & Evert	model	X2	df	р	X2	df	р
Due Due essein e	ZM	8,066	14	$\ll 0.001$	33,6766	16	≪ 0.001
Non-	fΖM	1,011	13	$\ll 0.001$	17,559	16	$\ll 0.001$
Randomness	GIGP	587	13	$\ll 0.001$	7,815	16	$\ll 0.001$
The Foot	-						

Compare to V fit:

The corpus as a (non-)random sample

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 In our experiment, we had access to full population (the Brown) and could take random sample from it

The corpus as a (non-)random sample

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- In our experiment, we had access to full population (the Brown) and could take random sample from it
- In real life, full corpus *is* our sample from the population (e.g., "English", an author's mental lexicon, all words generated by a wfp)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- In our experiment, we had access to full population (the Brown) and could take random sample from it
- In real life, full corpus *is* our sample from the population (e.g., "English", an author's mental lexicon, all words generated by a wfp)
- If it is not random, there is nothing we can do about it (randomizing the sample will not help!)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Abandon lexical statistics

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Abandon lexical statistics
- Live with it

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Abandon lexical statistics
- Live with it
- Re-define the population

- Pre-processing and non-randomness
- Baroni & Evert
- Pre-Processing
- Non-Randomness
- The End

- Abandon lexical statistics
- Live with it
- Re-define the population
- Try to account for underdispersion when computing the models (will get mathematically very complicated, but see Baayen 2001, ch. 5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Not always that bad Our Mutual Friend

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Outline

Pre-processing and non-randomness Baroni & Evert	Pre-Processing
Pre-Processing Non- Randomness	Non-Randomness
The End	The End

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

 Motivation: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Motivation: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)
- LNRE modeling:
 - Population model with limited number of parameters (e.g., ZM), expressed in terms of type density function
 - Equations to calculate expected V and frequency spectrum in random samples of arbitrary size using population model
 - Estimation of population parameters via fit of expected elements to observed frequency spectrum

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Motivation: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)
- LNRE modeling:
 - Population model with limited number of parameters (e.g., ZM), expressed in terms of type density function
 - Equations to calculate expected V and frequency spectrum in random samples of arbitrary size using population model
 - Estimation of population parameters via fit of expected elements to observed frequency spectrum

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

zipfR package to apply LNRE modeling

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Motivation: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)
- LNRE modeling:
 - Population model with limited number of parameters (e.g., ZM), expressed in terms of type density function
 - Equations to calculate expected V and frequency spectrum in random samples of arbitrary size using population model
 - Estimation of population parameters via fit of expected elements to observed frequency spectrum

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- zipfR package to apply LNRE modeling
- Problems

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Study (and deal with) non-randomness

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

Study (and deal with) non-randomness

Better parameter estimation

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

- Study (and deal with) non-randomness
- Better parameter estimation

Improve zipfR (any feature request?)

- Pre-processing and non-randomness
- Baroni & Evert
- Pre-Processing
- Non-Randomness
- The End

- Study (and deal with) non-randomness
- Better parameter estimation
- Improve zipfR (any feature request?)
- Use LNRE modeling in applications, e.g.:
 - Good-Turing-style estimation
 - Productivity beyond morphology
 - Better features for machine learning

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Mixture models

That's All, Folks!

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ