

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

the population

Random samples Expectation Mini-example

Trial & error Automatic estimation

A practical

Counting Words:

Type-rich populations, samples, and statistical models

Marco Baroni & Stefan Evert

Málaga, 8 August 2006

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

Random samples Expectation Mini-example

Trial & error Automatic estimation

A practical

Why we need the population

There are two reasons why we want to construct a model of the type population distribution:

- Population distribution is interesting by itself, for theoretical reasons or in NLP applications
- ▶ We know how to simulate sampling from population → once we have a population model, we can obtain estimates of V(N), $V_1(N)$ and similar quantities for arbitrary sample sizes N

A third reason:

- ► The bell-bottom shape of the observed Zipf ranking does not fit Zipf's law (type frequencies must be integers!)
- ▶ It is more natural to characterize occurrence *probabilities* (for which there is no such restriction) by Zipf's law

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

the population

Random samples Mini-example

estimation Trial & error Automatic estimation

A practical

The type population

Sampling from the population

Parameter estimation

A practical example

A population of types

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

Random samples Expectation Mini-example

estimation Trial & error Automatic estimation

A practical

► A type population is characterized by

- a) a set of types w_k
- b) the corresponding occurrence probabilities π_k
- ▶ The actual "identities" of the types are irrelevant (for word frequency distributions)
 - we don't care whether w_{43194} is wormhole or heatwave
- ▶ It is customary (and convenient) to arrange types in order of decreasing probability: $\pi_1 \geq \pi_2 \geq \pi_3 \geq \cdots$
- ▶ NB: this is usually *not* the same ordering as in the observed Zipf ranking (we will see examples of this later)

Today's quiz ...

Populations & samples

Baroni & Evert

The population Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Everybody remember what probabilities are?

- ▶ $0 \le \pi_k \le 1$ (for all k)

Populations &

samples Baroni & Evert

The population

Type probabilities

Population models

ZM & fZM

Sampling from the population Random samples

Random sampl Expectation Mini-example

estimation

Trial & error Automatic estimation

A practical

The problem with probabilities . . .

- ▶ We cannot measure these probabilities directly
- ▶ In principle, such probabilities can be estimated from a sample (that's what most of statistics is about), e.g.

$$\pi \approx \frac{f}{n}$$

▶ But we cannot reliably estimate thousands or millions of π_k 's from any finite sample (just think of all the unseen types that do not occur in the sample)

Today's quiz (cont'd)

Populations & samples

Baroni & Evert

The population Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

And what their interpretation is?

- $\blacktriangleright \pi_k$ = relative frequency of w_k in huge body of text
 - e.g. population = "written English", formalized as all English writing that has ever been published
 - ▶ also: π_k = chances that a token drawn at random belongs to type w_k
- $\blacktriangleright \pi_k = \text{output probability for } w_k \text{ in generative model}$
 - e.g. psycholinguistic model of a human speaker
 - π_k = probability that next word uttered by the speaker belongs to type w_k (without knowledge about context and previous words)
- analogous interpretations for other linguistic and non-linguistic phenomena

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population Random samples

Expectation Mini-example

estimation Trial & error Automatic estimation

A practical example

... and its solution

- → We need a model for the population
 - ► This model embodies our hypothesis that the distribution of type probabilities has a certain general shape (more precisely, we speak of a **family** of models)
- ► The exact form of the distribution is then determined by a small number of **parameters** (typically 2 or 3)
- ▶ These parameters can be estimated with relative ease

Examples of population models

Populations & samples

Baroni & Evert

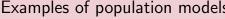
Type probabilities Population models ZM & fZM

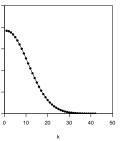
the population

Random samples Expectation Mini-example

Trial & error Automatic estimation

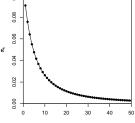
A practical

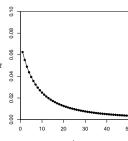


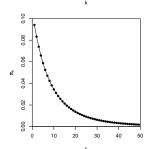


0.04

0.02







ZipfR

Populations & samples

Baroni & Evert

Type probabilities Population models

the population

Random samples Expectation Mini-example

estimation

Trial & error Automatic estimation

A practical

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

- ▶ We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well, across many phenomena and data sets
- ▶ Re-phrase the law for type probabilities instead of frequencies:

$$\pi_k := \frac{C}{(k+b)^a}$$

- ▶ Two free parameters: a > 1 and $b \ge 0$
- ▶ C is not a parameter but a normalization constant, needed to ensure that $\sum_k \pi_k = 1$
- **⇒** the **Zipf-Mandelbrot** population model

The parameters of the Zipf-Mandelbrot model

Populations & samples

Baroni & Evert

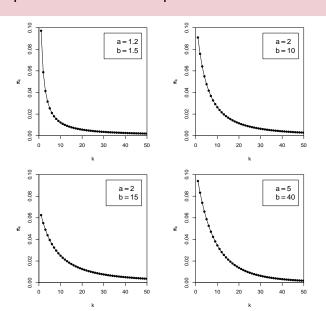
Type probabilities Population models ZM & fZM

Random samples Expectation

Mini-example

Trial & error Automatic estimation

A practical



The parameters of the Zipf-Mandelbrot model

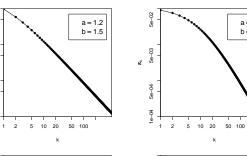
Baroni & Evert

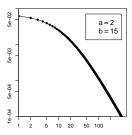
The population Type probabilities Population models ZM & fZM

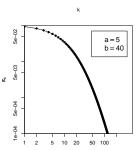
Random samples Expectation Mini-example

estimation Trial & error Automatic estimation

A practical example







a=2

b = 10

The finite Zipf-Mandelbrot model

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population Random samples Expectation Mini-example

Parameter

Trial & error Automatic estimation

A practical example

▶ Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small

 $\pi=10^{-6}$ (once every million words), $\pi=10^{-9}$ (once every billion words), $\pi=10^{-12}$ (once on the entire Internet), $\pi=10^{-100}$ (once in the universe?)

► Alternative: finite (but often very large) number of types in the population

▶ We call this the **population vocabulary size** S (and write $S = \infty$ for an infinite type population)

The finite Zipf-Mandelbrot model

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

▶ The finite Zipf-Mandelbrot model simply stops after the first S types $(w_1, ..., w_S)$

► S becomes a new parameter of the model

→ the finite Zipf-Mandelbrot model has 3 parameters

▶ NB: C will not have the same value as for the corresponding infinite ZM model

Abbreviations: **ZM** for **Zipf-Mandelbrot** model, and **fZM** for **finite Zipf-Mandelbrot** model

The next steps

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Once we have a population model . . .

- ▶ We still need to estimate the values of its parameters
 - we'll see later how we can do this
- ► We want to simulate random samples from the population described by the model
 - basic assumption: real data sets (such as corpora) are random samples from this population
 - this allows us to predict vocabulary growth, the number of previously unseen types as more text is added to a corpus, the frequency spectrum of a larger data set, etc.
 - ▶ it will also allow us to estimate the model parameters

Populations &

samples
Baroni & Evert

The population
Type probabilities
Population model:
ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

Outline

The type population

Sampling from the population

Parameter estimation

Sampling from a population model

Populations & samples Baroni & Evert

Type probabilities Population models ZM & fZM

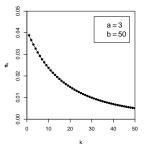
the population

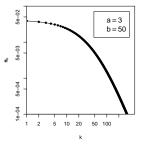
Random samples Expectation Mini-example

Trial & error Automatic estimation

A practical

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:





Use computer simulation to sample from this model:

▶ Draw *N* tokens from the population such that in each step, type w_k has probability π_k to be picked

Sampling from a population model

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

the population

Random samples Expectation Mini-example

estimation

Trial & error Automatic estimation

A practical

#1:	1	42	34	23	108	18	48	18	1	
	time	order	room	school	town	course	area	course	time	
#2:	286	28	23	36	3	4	7	4	8	
#3:	2	11	105	21	11	17	17	1	16	
#4:	44	3	110	34	223	2	25	20	28	
#5:	24	81	54	11	8	61	1	31	35	
#6:	3	65	9	165	5	42	16	20	7	
#7 :	10	21	11	60	164	54	18	16	203	
#8:	11	7	147	5	24	19	15	85	37	

Sampling from a population model

Populations & samples

Baroni & Evert

The population Type probabilities Population models ZM & fZM

Random samples

Expectation Mini-example

Trial & error

Automatic estimation

A practical

In this way, we can . . .

- ► draw samples of arbitrary size *N*
 - ▶ the computer can do it efficiently even for large *N*
- ▶ draw as many samples as we need
- ▶ compute type frequency lists, frequency spectra and vocabulary growth curves from these samples
 - ▶ i.e., we can analyze them with the same methods that we have applied to the observed data sets

Here are some results for samples of size $N = 1000 \dots$

Samples: type frequency list & spectrum

Populations & samples

Baroni	ρ,	Eve

Type probabilities ZM & fZM

Random samples Expectation Mini-example

estimation

Trial & error Automatic estimation

A practical

rank <i>r</i>	f_r	type <i>k</i>	
1	37	6	•
2	36	1	
3	33	3	
4	31	7	
5	31	10	
6	30	5	
7	28	12	
8	27	2	
9	24	4	
10	24	16	
11	23	8	
12	22	14	
		:	

m	V_m
1	83
2	22
3	20
4	12
5	10
6	5
7	5
8	3
9	3
10	3
:	:

sample #1

Samples: type frequency list & spectrum

Populations & samples

Baroni & Evert

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Trial & error Automatic estimation

A practical

rank <i>r</i>	f_r	type <i>k</i>	m	V_m
1	39	2	1	76
2	34	3	2	27
3	30	5	3	17
4	29	10	4	10
5	28	8	5	6
6	26	1	6	5
7	25	13	7	7
8	24	7	8	3
9	23	6	10	4
10	23	11	11	2
11	20	4	:	:
12	19	17	•	
:	:	÷	san	nple #2

Random variation in type-frequency lists

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

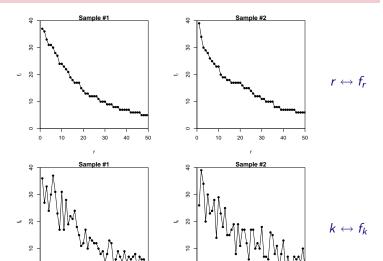
the population

Random samples Expectation Mini-example

estimation

Trial & error Automatic estimation

A practical example



ZipiR

Random variation in type-frequency lists

Populations & samples

Baroni & Evert

The population Type probabilities Population models ZM & fZM

Sampling from

Random samples Expectation Mini-example

Trial & error Automatic estimation

A practical

- \triangleright Random variation leads to different type frequencies f_k in every new sample
 - particularly obvious when we plot them in population order (bottom row, $k \leftrightarrow f_k$)
- ▶ Different ordering of types in the Zipf ranking for every new sample
 - ▶ Zipf rank r in sample \neq population rank k!
 - ▶ leads to severe problems with statistical methods
- ▶ Individual types are irrelevant for our purposes, so let us take a perspective that abstracts away from them
 - frequency spectrum
 - vocabulary growth curve
- considerable amount of random variation still visible

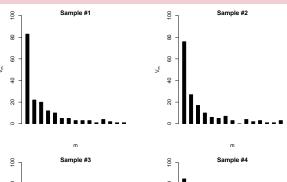
Random variation: frequency spectrum

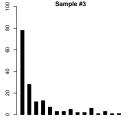
The population Type probabilities ZM & fZM

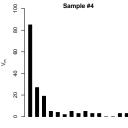
Sampling from

Random samples Expectation Mini-example

estimation Trial & error Automatic estimation







Random variation: vocabulary growth curve

Populations & samples

Baroni & Evert

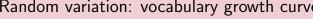
Type probabilities ZM & fZM

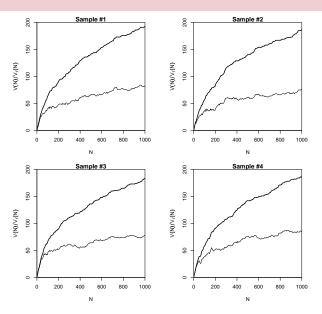
the population

Random samples Expectation Mini-example

Trial & error Automatic estimation

A practical





Expected values

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

the population

Random samples Expectation Mini-example

estimation

Trial & error Automatic estimation

A practical example

▶ There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely

Take the average over a large number of samples

► Such averages are called **expected values** or expectations in statistics (frequentist approach)

▶ Notation: E[V(N)] and $E[V_m(N)]$

- indicates that we are referring to expected values for a sample of size N
- ightharpoonup rather than to the specific values V and V_m observed in a particular sample or a real-world data set
- ▶ Usually we can omit the sample size: E[V] and $E[V_m]$

The expected frequency spectrum

Populations & samples

Baroni & Evert

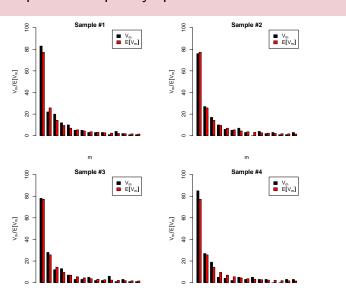
The population Type probabilities Population models ZM & fZM

Random samples

Expectation Mini-example

Trial & error Automatic estimation

A practical



The expected vocabulary growth curve

Populations & samples

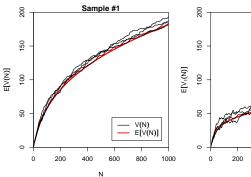
Baroni & Evert

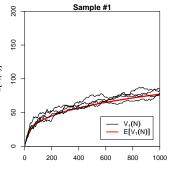
Type probabilities ZM & fZM

Random samples

Expectation Mini-example

estimation Trial & error Automatic estimation





Great expectations made easy

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

the population
Random samples
Expectation
Mini-example

Parameter

Trial & error Automatic estimation

A practical example

► Fortunately, we don't have to take many thousands of samples to calculate expectations: there is a (relatively simple) mathematical solution (→ Wednesday)

► This solution also allows us to estimate the amount of random variation → variance and confidence intervals

- example: expected VGCs with confidence intervals
- we won't pursue variance any further in this course

Confidence intervals for the expected VGC

Populations & samples

Baroni & Evert

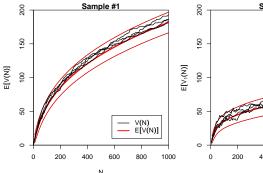
The population
Type probabilities
Population models
ZM & fZM

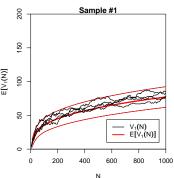
Sampling from the population

Random samples Expectation Mini-example

estimation
Trial & error
Automatic
estimation

A practical example





A mini-example

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical

- ▶ G. K. Zipf claimed that the distribution of English word frequencies follows Zipf's law with $a \approx 1$
 - ightharpoonup a pprox 1.5 seems a more reasonable value when you look at larger text samples than Zipf did
- ▶ The most frequent word in English is *the* with $\pi \approx .06$
- ▶ Zipf-Mandelbrot law with a=1.5 and b=7.5 yields a population model where $\pi_1 \approx .06$ (by trial & error)

A mini-example

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

the population
Random samples

Mini-example Parameter

estimation
Trial & error
Automatic
estimation

A practical example

► How many different words do we expect to find in a 1-million word text?

► $N = 1,000,000 \rightarrow E[V(N)] = 33026.7$

▶ 95%-confidence interval: V(N) = 32753.6...33299.7

► How many do we really find?

lacktriangle Brown corpus: 1 million words of edited American English

► $V = 45215 \rightarrow ZM$ model is not quite right

▶ Physicists (and some mathematicians) are happy as long as they get the order of magnitude right . . .

Model was not based on actual data!

Outline

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population Random samples

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical

The type population

Sampling from the population

Parameter estimation

A practical example

Parameter estimation by trial & error

Populations & samples

Baroni & Evert

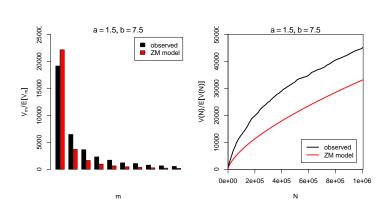
The population
Type probabilities
Population models
ZM & fZM

Sampling from the population Random samples Expectation

Mini-example Parameter estimation

Trial & error Automatic estimation

A practical



Estimating model parameters

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

- ▶ Parameter settings in the mini-example were based on general assumptions (claims from the literature)
- ▶ But we also have empirical data on the word frequency distribution of English available (the Brown corpus)
- ► Choose parameters so that population model matches the empirical distribution as well as possible
- ► E.g. by trial and error . . .
 - guess parameters
 - compare model predictions for sample of size N₀ with observed data (N₀ tokens)
 - based on frequency spectrum or vocabulary growth curve
 - change parameters & repeat until satisfied
- ► This process is called **parameter estimation**

ZipfR

Parameter estimation by trial & error

Populations & samples

Baroni & Evert

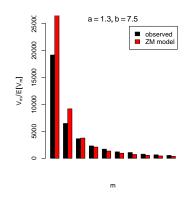
Type probabilities Population models ZM & fZM

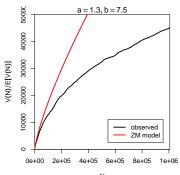
Sampling from the population Random samples

Random sampl Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation





Parameter estimation by trial & error

observed

ZM model

5000C

40000

30000

20000

v(n)/E[v(n)]

a = 1.3, b = 0.2

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

ZM model

Populations & samples

Baroni & Evert

25000

20000

15000

5000

 $V_m/E[V_m]$

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

estimation

Trial & error

A practical

a = 1.3, b = 0.2

Parameter estimation by trial & error

Populations & samples

Baroni & Evert

Type probabilities Population models ZM & fZM

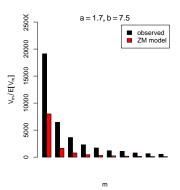
Sampling from the population

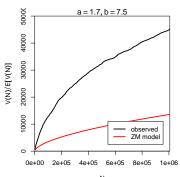
Random samples Expectation Mini-example

estimation

Trial & error

A practical example





Parameter estimation by trial & error

Populations & samples

Baroni & Evert

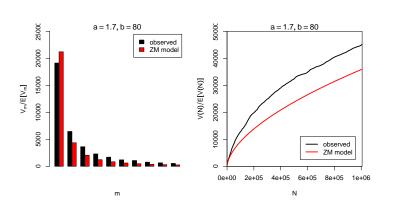
The population Type probabilities Population models ZM & fZM

Sampling from Random samples Expectation

Mini-example estimation

Trial & error Automatic estimation

A practical



Parameter estimation by trial & error

Populations & samples

Baroni & Evert

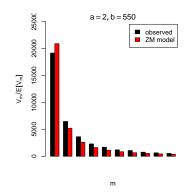
The population Type probabilities ZM & fZM

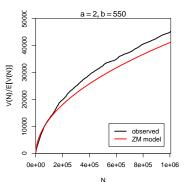
Sampling from

Random samples Expectation Mini-example

estimation

Trial & error Automatic estimation





Automatic parameter estimation

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error

A practical example

▶ Parameter estimation by trial & error is tedious
→ let the computer to the work!

- ► Need **cost function** to quantify "distance" between model expectations and observed data
 - based on vocabulary size and vocabulary spectrum (these are the most convenient criteria)
- ► Computer estimates parameters by automatic minimization of cost function
 - clever algorithms exist that find out quickly in which direction they have to "push" the parameters to approach the minimum
 - implemented in standard software packages

Cost functions for parameter estimation

Populations & samples

Baroni & Evert

The population Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

► Cost functions compare expected frequency spectrum $E[V_m(N_0)]$ with observed spectrum $V_m(N_0)$

► Choice #1: how to weight differences

lacksquare absolute values of differences $\sum_{m=1}^{M} \left| V_m - \mathrm{E}[V_m] \right|$

▶ mean squared error $\frac{1}{M} \sum_{m=1}^{M} (V_m - E[V_m])^2$

chi-squared criterion: scale by estimated variances

Populations &

samples Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

Sampling from the population Random samples Expectation Mini-example

Parameter estimation

Trial & error

A practical

Cost functions for parameter estimation

- ► Cost functions compare expected frequency spectrum $E[V_m(N_0)]$ with observed spectrum $V_m(N_0)$
- ► Choice #1: how to weight differences
- ▶ Choice #2: how many spectrum elements to use
 - ▶ typically between M = 2 and M = 15
 - what happens if M < number of parameters?
- ► For many applications, it is important to match V precisely: additional constraint $E[V(N_0)] = V(N_0)$
 - general principle: you can match as many constraints as there are free parameters in the model
- ► Felicitous choice of cost function and *M* can substantially improve the quality of the estimated model
 - ▶ It isn't a science, it's an art . . .

Populations & samples

Baroni & Evert

The population
Type probabilities
Population models
ZM & fZM

the population
Random samples
Expectation
Mini-example

estimation
Trial & error
Automatic
estimation

A practica

Goodness-of-fit

- ► Automatic estimation procedure minimizes cost function until no further improvement can be found
 - ▶ this is a so-called **local minimum** of the cost function
 - not necessarily the global minimum that we want to find
- Key question: is the estimated model good enough?
- ► In other words: does the model provide a plausible explanation of the observed data as a random sample from the population?
- ► Can be measured by **goodness-of-fit** test
 - ▶ use special tests for such models (Baayen 2001)
 - p-value specifies whether model is plausible
 - ▶ small p-value → reject model as explanation for data
 - we want to achieve a *high* p-value
- ► Typically, we find *p* < .001 but the models can still be useful for many purposes!

Mini-example (cont'd)

Populations & samples

Baroni & Evert

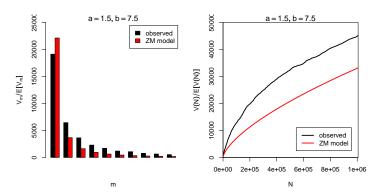
Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Trial & error Automatic

A practical



• We started with a = 1.5 and b = 7.5(general assumptions)

ZipfR

Mini-example (cont'd)

Populations & samples

Baroni & Evert

Type probabilities ZM & fZM

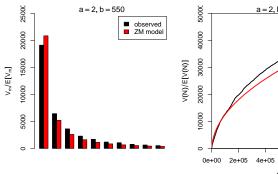
Sampling from the population

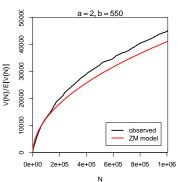
Random samples Expectation Mini-example

estimation

Trial & error Automatic estimation

A practical example





▶ By trial & error we found a = 2.0 and b = 550

Mini-example (cont'd)

Populations & samples

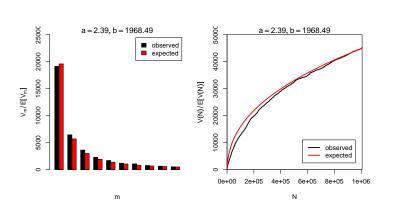
Baroni & Evert

The population Type probabilities Population models ZM & fZM

Sampling from Random samples Expectation Mini-example

Trial & error Automatic

A practical



- ▶ Automatic estimation procedure: a = 2.39 and b = 1968
- ▶ Goodness-of-fit: $p \approx 0$ (but much better than before!)

Outline

Populations & samples

Baroni & Evert

The population Type probabilities ZM & fZM

Sampling from

Random samples Expectation Mini-example

estimation Trial & error Automatic estimation

A practical example

Practical example: Oliver Twist

Populations & samples

Baroni & Evert

Type probabilities Population models ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation

A practical example

► A practical example: extrapolate vocabulary growth in Dickens' novel *Oliver Twist*

- ▶ Observed data: $N_0 = 157302$, $V(N_0) = 10710$
- ► Our choices (experimentation & experience):
 - ▶ population model: finite Zipf-Mandelbrot
 - ► cost function: chi-squared type
 - ▶ number of spectrum elements: M = 10
 - ▶ additional constraint: $E[V(N_0)] = V(N_0)$
- ► Automatic parameter estimation yields

$$a = 1.45, b = 34.6, S = 20587$$

- population vocabulary size is extremely small
- but this model extrapolates only the vocabulary used in Oliver Twist, not the full vocabulary of Charles Dickens

Results for Oliver Twist

Populations & samples

Baroni & Evert

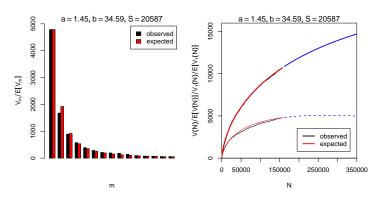
The population
Type probabilities
Population models
ZM & fZM

Sampling from the population

Random samples Expectation Mini-example

Parameter estimation

Trial & error Automatic estimation



- ► Goodness-of-fit: $p = 3.6 \cdot 10^{-40}$
 - but visually, the approximation is very good