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Introduction Motivation

Some research questions

I How many words did Shakespeare know?
I What is the coverage of my treebank grammar on big data?
I How many typos are there on the Internet?
I Is -ness more productive than -ity in English?
I Are there differences in the productivity of nominal

compounds between academic writing and novels?
I Does Dickens use a more complex vocabulary than Rowling?
I Can a decline in lexical complexity predict Alzheimer’s disease?
I How frequent is a hapax legomenon from the Brown corpus?
I What is appropriate smoothing for my n-gram model?
I Who wrote the Bixby letter, Lincoln or Hay?
I How many different species of . . . are there? (Brainerd 1982)
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Introduction Motivation

Some research questions

I ØØ

I coverage estimates
I ÚÚ

I ØØ

I productivity

I lexical complexity & stylometry
I ÚÚ

I prior & posterior distribution
I ÚÚ

I ØØ

I unexpected applications
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Introduction Motivation

Type-token statistics

I These applications relate token and type counts
I tokens = individual instances (occurrences)
I types = distinct items

I Type-token statistics different from most statistical inference
I not about probability of a specific event
I but about diversity of events and their probability distribution

I Relatively little work in statistical science
I Nor a major research topic in computational linguistics

I very specialized, usually plays ancillary role in NLP
I Corpus linguistics: TTR & simple productivity measures

I often applied without any statistical inference
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Introduction Motivation

Zipf’s law (Zipf 1949)

A) Frequency distributions in natural language are highly skewed

B) Curious relationship between rank & frequency
word r f r · f

the 1. 142,776 142,776
and 2. 100,637 201,274
be 3. 94,181 282,543
of 4. 74,054 296,216

(Dickens)

C) Various explanations of Zipf’s law
I principle of least effort (Zipf 1949)
I optimal coding system, MDL (Mandelbrot 1953, 1962)
I random sequences (Miller 1957; Li 1992; Cao et al. 2017)
I Markov processes Ü n-gram models (Rouault 1978)

D) Language evolution: birth-death-process (Simon 1955)
+ not the main topic today!
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Introduction Motivation

Goals of this tutorial

I Introduce descriptive statistics, notation and terminology

I Explain mathematical foundations of LNRE models for
statistical inference

I Practise application of models in R

I Discuss measures of productivity & lexical richness

I Address problems and advanced techniques
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Introduction Notation & basic concepts

Tokens & types

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very
I N = 15: number of tokens = sample size
I V = 7: number of distinct types = vocabulary size

(recently, very, not, otherwise, much, merely, now)

type-frequency list
w fw
recently 1
very 5
not 3
otherwise 1
much 2
merely 2
now 1
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Introduction Notation & basic concepts

Zipf ranking

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very
I N = 15: number of tokens = sample size
I V = 7: number of distinct types = vocabulary size

(recently, very, not, otherwise, much, merely, now)
Zipf ranking

w r fr
very 1 5
not 2 3
merely 3 2
much 4 2
now 5 1
otherwise 6 1
recently 7 1

1 2 3 4 5 6 7

0
2

4
6

8
1
0

Zipf ranking: adverbs

rank

fr
e
q
u
e
n
c
y
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Introduction Notation & basic concepts

A realistic Zipf ranking: the Brown corpus

top frequencies bottom frequencies
r f word rank range f randomly selected examples
1 69836 the 7731 – 8271 10 schedules, polynomials, bleak
2 36365 of 8272 – 8922 9 tolerance, shaved, hymn
3 28826 and 8923 – 9703 8 decreased, abolish, irresistible
4 26126 to 9704 – 10783 7 immunity, cruising, titan
5 23157 a 10784 – 11985 6 geographic, lauro, portrayed
6 21314 in 11986 – 13690 5 grigori, slashing, developer
7 10777 that 13691 – 15991 4 sheath, gaulle, ellipsoids
8 10182 is 15992 – 19627 3 mc, initials, abstracted
9 9968 was 19628 – 26085 2 thar, slackening, deluxe

10 9801 he 26086 – 45215 1 beck, encompasses, second-place
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Introduction Notation & basic concepts

Frequency spectrum
I pool types with f = 1 (hapax legomena), types with f = 2

(dis legomena), . . . , f = m, . . .
I V1 = 3: number of hapax legomena (now, otherwise, recently)
I V2 = 2: number of dis legomena (merely, much)
I general definition: Vm = |{w | fw = m}|
Zipf ranking

w r fr
very 1 5
not 2 3
merely 3 2
much 4 2
now 5 1
otherwise 6 1
recently 7 1

frequency
spectrum
m Vm
1 3
2 2
3 1
5 1

1 2 3 4 5 6 7

frequency spectrum: adverbs

m

V
m

0
2

4
6

8
1
0
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Introduction Notation & basic concepts

A realistic frequency spectrum: the Brown corpus

1 2 3 4 5 6 7 8 9 11 13 15

frequency spectrum: Brown corpus

m

V
m
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0
0
0
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Introduction Notation & basic concepts

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

I N = 1, V (N) = 1, V1(N) = 1

I N = 3, V (N) = 3, V1(N) = 3
I N = 7, V (N) = 5, V1(N) = 4
I N = 12, V (N) = 7, V1(N) = 4
I N = 15, V (N) = 7, V1(N) = 3
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vocabulary growth curve: adverbs
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)

V(N)
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Introduction Notation & basic concepts

A realistic vocabulary growth curve: the Brown corpus
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Introduction Notation & basic concepts

Vocabulary growth in authorship attribution
I Authorship attribution by n-gram tracing applied to the case

of the Bixby letter (Grieve et al. 2018)
I Word or character n-grams in disputed text are compared

against large “training” corpora from candidate authors

 

Figure 1 One Gettysburg Address 2-word n-gram traces 322 

 323 
 324 

In addition to analysing 2-word n-grams, we also analysed 1-, 3- and 4-word n-grams, 325 

based on the average percentage of n-grams seen in 50 random 260,000-word samples of 326 

texts. The analysis was only run up to 4-word n-grams because from that point onward the Hay 327 

corpus contains none of the n-grams in the Gettysburg Address. The 3- and 4-word n-gram 328 

analyses also correctly attributed the Gettysburg Address to Lincoln: 18% of 3-grams for Lincoln 329 

vs. 14% of 3-grams for Hay and 2% of 4-grams for Lincoln vs. 0% of 4-grams for Hay. The 1-330 

word n-gram analysis, however, incorrectly attributed the Gettysburg Address to Hay. Figure 3 331 

presents the aggregated n-gram traces for all analyses. Notably, the 2-, 3- and 4-word n-gram 332 

analyses, which correctly attributed the document to Lincoln, appear to be far more definitive 333 

than the incorrect 1-word n-gram analysis.  334 
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Introduction Zipf’s law

Observing Zipf’s law
across languages and different linguistic units
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Introduction Zipf’s law

Observing Zipf’s law

I Straight line in double-logarithmic space corresponds
to power law for original variables

I This leads to Zipf’s (1949; 1965) famous law:

fr = C
ra

I If we take logarithm on both sides, we obtain:

I Intuitive interpretation of a and C :
I a is slope determining how fast log frequency decreases
I log C is intercept, i.e. log frequency of most frequent word

(r = 1 Ü log r = 0)

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 23 / 117



Introduction Zipf’s law

Observing Zipf’s law

I Straight line in double-logarithmic space corresponds
to power law for original variables

I This leads to Zipf’s (1949; 1965) famous law:

fr = C
ra

I If we take logarithm on both sides, we obtain:

log fr = log C − a · log r

I Intuitive interpretation of a and C :
I a is slope determining how fast log frequency decreases
I log C is intercept, i.e. log frequency of most frequent word

(r = 1 Ü log r = 0)

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 23 / 117



Introduction Zipf’s law

Observing Zipf’s law

I Straight line in double-logarithmic space corresponds
to power law for original variables

I This leads to Zipf’s (1949; 1965) famous law:

fr = C
ra

I If we take logarithm on both sides, we obtain:

log fr︸ ︷︷ ︸
y

= log C − a · log r︸︷︷︸
x

I Intuitive interpretation of a and C :
I a is slope determining how fast log frequency decreases
I log C is intercept, i.e. log frequency of most frequent word

(r = 1 Ü log r = 0)

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 23 / 117



Introduction Zipf’s law

Observing Zipf’s law

I Straight line in double-logarithmic space corresponds
to power law for original variables

I This leads to Zipf’s (1949; 1965) famous law:

fr = C
ra

I If we take logarithm on both sides, we obtain:

log fr︸ ︷︷ ︸
y

= log C − a · log r︸︷︷︸
x

I Intuitive interpretation of a and C :
I a is slope determining how fast log frequency decreases
I log C is intercept, i.e. log frequency of most frequent word

(r = 1 Ü log r = 0)

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 23 / 117



Introduction Zipf’s law

Observing Zipf’s law
Least-squares fit = linear regression in log-space (Brown corpus)
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Introduction Zipf’s law

Zipf-Mandelbrot law
Mandelbrot (1953, 1962)

I Mandelbrot’s extra parameter:

fr = C
(r + b)a

I Zipf’s law is special case with b = 0

I Assuming a = 1, C = 60,000, b = 1:
I For word with rank 1, Zipf’s law predicts frequency of 60,000;

Mandelbrot’s variation predicts frequency of 30,000
I For word with rank 1,000, Zipf’s law predicts frequency of 60;

Mandelbrot’s variation predicts frequency of 59.94

I Zipf-Mandelbrot law forms basis of statistical LNRE models
I ZM law derived mathematically as limiting distribution of

vocabulary generated by a character-level Markov process
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Introduction Zipf’s law

Zipf-Mandelbrot law
Non-linear least-squares fit (Brown corpus)
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Introduction First steps (zipfR)

zipfR
Evert and Baroni (2007)

I http://zipfR.R-Forge.R-Project.org/
I Conveniently available from CRAN repository
I Package vignette = gentle tutorial introduction
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Introduction First steps (zipfR)

First steps with zipfR

I Set up a folder for this course, and make sure it is your
working directory in R (preferably as an RStudio project)

I Install the most recent version of the zipfR package
I tutorial requires version 0.7 or newer

I Package, handouts, code samples & data sets available from
http://zipfr.r-forge.r-project.org/lrec2018.html

> library(zipfR)

> ?zipfR # documentation entry point

> vignette("zipfr-tutorial") # read the zipfR tutorial
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Introduction First steps (zipfR)

Loading type-token data

I Most convenient input: sequence of tokens as text file in
vertical format (“one token per line”)

+ mapped to appropriate types: normalized word forms, word
pairs, lemmatized, semantic class, n-gram of POS tags, . . .

+ language data should always be in UTF-8 encoding!
+ large files can be compressed (.gz, .bz2, .xz)

I Sample data: brown_adverbs.txt on tutorial homepage
I lowercased adverb tokens from Brown corpus (original order)

+ download and save to your working directory

> adv <- readLines("brown_adverbs.txt", encoding="UTF-8")

> head(adv, 30) # mathematically, a ‘‘vector’’ of tokens
> length(adv) # sample size = 52,037 tokens
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Introduction First steps (zipfR)

Descriptive statistics: type-frequency list

> adv.tfl <- vec2tfl(adv)
> adv.tfl

k f type
not 1 4859 not
n’t 2 2084 n’t
so 3 1464 so
only 4 1381 only
then 5 1374 then
now 6 1309 now
even 7 1134 even
as 8 1089 as

...
...

...
N V

52037 1907

> N(adv.tfl) # sample size
> V(adv.tfl) # type count
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Introduction First steps (zipfR)

Descriptive statistics: type-frequency list

I Visualize descriptive statistics with plot method
> plot(adv.tfl) # Zipf ranking
> plot(adv.tfl, log="xy") # logarithmic scale recommended
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Introduction First steps (zipfR)

Descriptive statistics: frequency spectrum

> adv.spc <- tfl2spc(adv.tfl) # or directly with vec2spc
> adv.spc

m Vm
1 1 762
2 2 260
3 3 144
4 4 99
5 5 69
6 6 50
7 7 40
8 8 34

...
...

N V
52037 1907

> N(adv.spc) # sample size
> V(adv.spc) # type count
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Introduction First steps (zipfR)

Descriptive statistics: frequency spectrum

> plot(adv.spc) # barplot of frequency spectrum
> ?plot.spc # see help page for further options

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Frequency Spectrum

m

V
m
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8
0
0
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Introduction First steps (zipfR)

Descriptive statistics: vocabulary growth

I VGC lists vocabulary size V (N) at different sample sizes N
I Optionally also spectrum elements Vm(N) up to m.max

> adv.vgc <- vec2vgc(adv, m.max=2)
> plot(adv.vgc, add.m=1:2) # plot all three VGCs
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Introduction First steps (zipfR)

Further example data sets

?Brown words from Brown corpus
?BrownSubsets various subsets

?Dickens words from novels by Charles Dickens
?ItaPref Italian word-formation prefixes
?TigerNP NP and PP patterns from German Tiger treebank

?Baayen2001 frequency spectra from Baayen (2001)
?EvertLuedeling2001 German word-formation affixes (manually

corrected data from Evert and Lüdeling 2001)
Practice:
I Explore these data sets with descriptive statistics
I Try different plot options (from help pages ?plot.tfl,

?plot.spc, ?plot.vgc)
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LNRE models Population & samples

Outline

Introduction
Motivation
Notation & basic concepts
Zipf’s law
First steps (zipfR)

LNRE models
Population & samples
The mathematics of LNRE

Applications & examples
Productivity &
lexical diversity
Practical LNRE modelling
Bootstrapping experiments
LNRE as Bayesian prior

Challenges
Model inference
Zipf’s law
Non-randomness
Significance testing
Outlook
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LNRE models Population & samples

Why do we need statistics?

I Often want to compare samples of different sizes
+ extrapolation of VGC & productivity measures

I Interested in productivity of affix, vocabulary of author, . . . ;
not in a particular text or sample

+ statistical inference from sample to population
+ significance of differences in productivity

I Discrete frequency counts are difficult to capture with
generalizations such as Zipf’s law

+ Zipf’s law predicts many impossible types with 1 < fr < 2
+ population does not suffer from such quantization effects
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LNRE models Population & samples

LNRE models

I This tutorial introduces the state-of-the-art LNRE approach
proposed by Baayen (2001)

I LNRE = Large Number of Rare Events

I LNRE uses various approximations and simplifications to
obtain a tractable and elegant model

I Of course, we could also estimate the precise discrete
distributions using MCMC simulations, but . . .
1. LNRE model usually minor component of complex procedure
2. often applied to very large samples (N > 1 M tokens)
3. still better than naive least-squares regression on Zipf ranking
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LNRE models Population & samples

The LNRE population

I Population: set of S types wi with occurrence probabilities πi
I S = population diversity can be finite or infinite (S =∞)
I Not interested in specific types Ü arrange by decreasing

probability: π1 ≥ π2 ≥ π3 ≥ · · ·
+ impossible to determine probabilities of all individual types

I Normalization: π1 + π2 + . . .+ πS = 1

I Need parametric statistical model to describe full population
(esp. for S =∞), i.e. a function i 7→ πi

I type probabilities πi cannot be estimated reliably from a
sample, but parameters of this function can

I NB: population index i 6= Zipf rank r
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LNRE models Population & samples

What should the population look like?
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LNRE models Population & samples

Zipf-Mandelbrot law as a population model

I Zipf-Mandelbrot law for type probabilities:

πi := C
(i + b)a

I Two free parameters: a > 1 and b ≥ 0
+ C is not a parameter but a normalization constant,

needed to ensure that
∑

i πi = 1
I Third parameter: S > 0 or S =∞

I This is the Zipf-Mandelbrot population model (Evert 2004)
I ZM for Zipf-Mandelbrot model (S =∞)
I fZM for finite Zipf-Mandelbrot model
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LNRE models Population & samples

The parameters of the Zipf-Mandelbrot model
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LNRE models Population & samples

The parameters of the Zipf-Mandelbrot model
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LNRE models Population & samples

Sampling from a population model

Assume we believe that the population we are interested in can be
described by a Zipf-Mandelbrot model:
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Use computer simulation to generate random samples:
I Draw N tokens from the population such that in

each step, type wi has probability πi to be picked
I This allows us to make predictions for samples (= corpora)

of arbitrary size N
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LNRE models Population & samples

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .

time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...
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#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...
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LNRE models Population & samples

Samples: type frequency list & spectrum

rank r fr type i
1 37 6
2 36 1
3 33 3
4 31 7
5 31 10
6 30 5
7 28 12
8 27 2
9 24 4

10 24 16
11 23 8
12 22 14
...

...
...

m Vm
1 83
2 22
3 20
4 12
5 10
6 5
7 5
8 3
9 3
10 3
...

...

sample #1
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LNRE models Population & samples

Samples: type frequency list & spectrum

rank r fr type i
1 39 2
2 34 3
3 30 5
4 29 10
5 28 8
6 26 1
7 25 13
8 24 7
9 23 6

10 23 11
11 20 4
12 19 17
...

...
...

m Vm
1 76
2 27
3 17
4 10
5 6
6 5
7 7
8 3
10 4
11 2
...

...

sample #2
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LNRE models Population & samples

Random variation in type-frequency lists
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LNRE models Population & samples

Random variation: frequency spectrum
Sample #1
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LNRE models Population & samples

Random variation: frequency spectrum
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LNRE models Population & samples

Random variation: frequency spectrum
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LNRE models Population & samples

Random variation: frequency spectrum
Sample #4
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LNRE models Population & samples

Random variation: vocabulary growth curve
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LNRE models Population & samples

Random variation: vocabulary growth curve
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LNRE models Population & samples

Expected values

I There is no reason why we should choose a particular sample
to compare to the real data or make a prediction – each one is
equally likely or unlikely

I Take the average over a large number of samples, called
expected value or expectation in statistics

I Notation: E
[
V (N)

]
and E

[
Vm(N)

]
I indicates that we are referring to expected values for a sample

of size N
I rather than to the specific values V and Vm

observed in a particular sample or a real-world data set

I Expected values can be calculated efficiently without
generating thousands of random samples
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LNRE models Population & samples

The expected frequency spectrum
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LNRE models Population & samples

The expected vocabulary growth curve
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LNRE models Population & samples

Prediction intervals for the expected VGC
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“Confidence intervals” indicate predicted sampling distribution:
+ for 95% of samples generated by the LNRE model, VGC will

fall within the range delimited by the thin red lines
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LNRE models Population & samples

Parameter estimation by trial & error

observed
ZM model

a == 1.5,,  b == 7.5
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LNRE models Population & samples

Parameter estimation by trial & error
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a == 1.3,,  b == 7.5
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LNRE models Population & samples

Parameter estimation by trial & error

observed
ZM model

a == 1.3,,  b == 0.2
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LNRE models Population & samples

Parameter estimation by trial & error

observed
ZM model

a == 1.7,,  b == 7.5
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LNRE models Population & samples

Parameter estimation by trial & error

observed
ZM model

a == 1.7,,  b == 80

m

V
m

E
[[V

m
]]

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0 a == 1.7,,  b == 80

N
V

((N
))

E
[[V

((N
))]]

observed
ZM model

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 56 / 117



LNRE models Population & samples

Parameter estimation by trial & error

observed
ZM model

a == 2,,  b == 550
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LNRE models Population & samples

Automatic parameter estimation

observed
expected

a == 2.39,,  b == 1968.49
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I By trial & error we found a = 2.0 and b = 550
I Automatic estimation procedure: a = 2.39 and b = 1968
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LNRE models The mathematics of LNRE

Outline

Introduction
Motivation
Notation & basic concepts
Zipf’s law
First steps (zipfR)

LNRE models
Population & samples
The mathematics of LNRE

Applications & examples
Productivity &
lexical diversity
Practical LNRE modelling
Bootstrapping experiments
LNRE as Bayesian prior

Challenges
Model inference
Zipf’s law
Non-randomness
Significance testing
Outlook
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LNRE models The mathematics of LNRE

The sampling model

I Draw random sample of N tokens from LNRE population
I Sufficient statistic: set of type frequencies {fi}

I because tokens of random sample have no ordering
I Joint multinomial distribution of {fi}:

Pr({fi = ki} |N) = N!
k1! · · · kS !π

k1
1 · · ·π

kS
S

I Approximation: do not condition on fixed sample size N
I N is now the average (expected) sample size

I Random variables fi have independent Poisson distributions:

Pr(fi = ki) = e−Nπi (Nπi)ki
ki !
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LNRE models The mathematics of LNRE

Frequency spectrum

I Key problem: we cannot determine fi in observed sample
I because we don’t know which type wi is
I recall that population ranking fi 6= Zipf ranking fr

I Use spectrum {Vm} and sample size V as statistics
I contains all information we have about observed sample

I Can be expressed in terms of indicator variables

I[fi=m] =
{
1 fi = m
0 otherwise

Vm =
S∑
i=1

I[fi=m]

V =
S∑
i=1

I[fi>0] =
S∑
i=1

(
1− I[fi=0]

)
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LNRE models The mathematics of LNRE

The expected spectrum

I It is easy to compute expected values for the frequency
spectrum (and variances because the fi are independent)

E[I[fi=m]] = Pr(fi = m) = e−Nπi (Nπi)m
m!

E[Vm] =
S∑
i=1

E[I[fi=m]] =
S∑
i=1

e−Nπi (Nπi)m
m!

E[V ] =
S∑
i=1

E
[
1− I[fi=0]

]
=

S∑
i=1

(
1− e−Nπi

)
I NB: Vm and V are not independent because they are derived

from the same random variables fi
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LNRE models The mathematics of LNRE

Sampling distribution of Vm and V

I Joint sampling distribution of {Vm} and V is complicated
I Approximation: V and {Vm} asymptotically follow a

multivariate normal distribution
I motivated by the multivariate central limit theorem:

sum of many independent variables I[fi=m]
I Usually limited to first spectrum elements, e.g. V1, . . . ,V15

I approximation of discrete Vm by continuous distribution
suitable only if E[Vm] is sufficiently large

I Parameters of multivariate normal:
µµµ = (E[V ],E[V1],E[V2], . . .) and ΣΣΣ = covariance matrix

Pr
(
(V ,V1, . . . ,Vk) = v

)
∼ e− 1

2 (v−µµµ)TΣΣΣ−1(v−µµµ)√
(2π)k+1 det ΣΣΣ
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LNRE models The mathematics of LNRE

Type density function

I Discrete sums of probabilities in E[V ], E[Vm], . . . are
inconvenient and computationally expensive

I Approximation: continuous type density function g(π)

|{wi | a ≤ πi ≤ b}| =
∫ b

a
g(π) dπ

∑
{πi | a ≤ πi ≤ b} =

∫ b

a
πg(π) dπ

I Normalization constraint:∫ ∞
0

πg(π) dπ = 1

I Good approximation for low-probability types, but probability
mass of w1,w2, . . . “smeared out” over range
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LNRE models The mathematics of LNRE

Type density function
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LNRE models The mathematics of LNRE
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LNRE models The mathematics of LNRE

ZM and fZM as LNRE models

I Discrete Zipf-Mandelbrot population

πi := C
(i + b)a for i = 1, . . . ,S

I Corresponding type density function (Evert 2004)

g(π) =
{

C · π−α−1 A ≤ π ≤ B
0 otherwise

with parameters
I α = 1/a (0 < α < 1)
I B = (1− α)/(b · α)
I 0 ≤ A < B determines S (ZM with S =∞ for A = 0)

+ C is a normalization factor, not a parameter

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 65 / 117



LNRE models The mathematics of LNRE

ZM and fZM as LNRE models

I Discrete Zipf-Mandelbrot population

πi := C
(i + b)a for i = 1, . . . ,S

I Corresponding type density function (Evert 2004)

g(π) =
{

C · π−α−1 A ≤ π ≤ B
0 otherwise

with parameters
I α = 1/a (0 < α < 1)
I B = (1− α)/(b · α)
I 0 ≤ A < B determines S (ZM with S =∞ for A = 0)

+ C is a normalization factor, not a parameter

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 65 / 117



LNRE models The mathematics of LNRE

ZM and fZM as LNRE models

I Discrete Zipf-Mandelbrot population

πi := C
(i + b)a for i = 1, . . . ,S

I Corresponding type density function (Evert 2004)

g(π) =
{

C · π−α−1 A ≤ π ≤ B
0 otherwise

with parameters
I α = 1/a (0 < α < 1)
I B = (1− α)/(b · α)
I 0 ≤ A < B determines S (ZM with S =∞ for A = 0)

+ C is a normalization factor, not a parameter

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 65 / 117



LNRE models The mathematics of LNRE

ZM and fZM as LNRE models
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LNRE models The mathematics of LNRE

Expectations as integrals

I Expected values can now be expressed as integrals over g(π)

E[Vm] =
∫ ∞
0

(Nπ)m
m! e−Nπg(π) dπ

E[V ] =
∫ ∞
0

(
1− e−Nπ

)
g(π) dπ

I Reduce to simple closed form for ZM with b = 0 (Ü B =∞)

E[Vm] = C
m! · N

α · Γ(m − α)

E[V ] = C · Nα · Γ(1− α)
α

I fZM and general ZM with incomplete Gamma function
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LNRE models The mathematics of LNRE

Parameter estimation from training corpus

I For ZM, α = E[V1]
E[V ] ≈

V1
V can be estimated directly,

but prone to overfitting
I General parameter fitting by MLE:

maximize likelihood of observed spectrum v

max
α,A,B

Pr
(
(V ,V1, . . . ,Vk) = v

∣∣α,A,B)

I Multivariate normal approximation:

min
α,A,B

(v−µµµ)TΣΣΣ−1(v−µµµ)

I Minimization by gradient descent (BFGS, CG) or simplex
search (Nelder-Mead)
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LNRE models The mathematics of LNRE

Parameter estimation from training corpus
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LNRE models The mathematics of LNRE

Parameter estimation from training corpus
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LNRE models The mathematics of LNRE

Goodness-of-fit
(Baayen 2001, Sec. 3.3)

I How well does the fitted model explain the observed data?
I For multivariate normal distribution:

X 2 = (V−µµµ)TΣΣΣ−1(V−µµµ) ∼ χ2k+1

where V = (V ,V1, . . . ,Vk)

å Multivariate chi-squared test of goodness-of-fit
I replace V by observed v Ü test statistic x2

I must reduce df = k + 1 by number of estimated parameters

I NB: significant rejection of the LNRE model for p < .05
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LNRE models The mathematics of LNRE

Coffee break!
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Applications & examples Productivity & lexical diversity

Outline
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Motivation
Notation & basic concepts
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LNRE models
Population & samples
The mathematics of LNRE

Applications & examples
Productivity &
lexical diversity
Practical LNRE modelling
Bootstrapping experiments
LNRE as Bayesian prior

Challenges
Model inference
Zipf’s law
Non-randomness
Significance testing
Outlook

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 72 / 117



Applications & examples Productivity & lexical diversity

Measuring morphological productivity
example from Evert and Lüdeling (2001)

0 5000 10000 15000 20000 25000 30000 35000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Vocabulary Growth Curves

N

V
(N
)

-bar
-sam
-ös

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 73 / 117



Applications & examples Productivity & lexical diversity

Measuring morphological productivity
example from Evert and Lüdeling (2001)

0 50000 150000 250000 350000

0
50

00
10

00
0

15
00

0

a == 1.45,,  b == 34.59,,  S == 20587

N

V
((N

))
E

[[V
((N

))]]
V

1((
N

))
E

[[V
1((

N
))]]

observed
expected

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 73 / 117



Applications & examples Productivity & lexical diversity

Measuring morphological productivity
example from Evert and Lüdeling (2001)

0 5000 10000 15000 20000 25000 30000 35000

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Vocabulary Growth Curves

N

V
(N
)

-bar
-sam
-ös

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 73 / 117



Applications & examples Productivity & lexical diversity

Quantitative measures of productivity
(Tweedie and Baayen 1998; Baayen 2001)

I Baayen’s (1991) productivity index P
(slope of vocabulary growth curve)

P = V1

N

I TTR = type-token ratio

TTR = V
N

I Zipf-Mandelbrot slope

a

I Herdan’s law (1964)

C = log V
log N

I Yule (1944) / Simpson (1949)

K = 10 000 ·
∑

m m2Vm − N
N2

I Guiraud (1954)

R = V√
N

I Sichel (1975)

S = V2

V

I Honoré (1979)

H = log N
1− V1

V

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 74 / 117



Applications & examples Productivity & lexical diversity

Quantitative measures of productivity
(Tweedie and Baayen 1998; Baayen 2001)

I Baayen’s (1991) productivity index P
(slope of vocabulary growth curve)

P = V1

N

I TTR = type-token ratio

TTR = V
N

I Zipf-Mandelbrot slope

a

I Herdan’s law (1964)

C = log V
log N

I Yule (1944) / Simpson (1949)

K = 10 000 ·
∑

m m2Vm − N
N2

I Guiraud (1954)

R = V√
N

I Sichel (1975)

S = V2

V

I Honoré (1979)

H = log N
1− V1

V

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 74 / 117



Applications & examples Productivity & lexical diversity

Productivity measures for bare singulars in the BNC

spoken written

V 2,039 12,876
N 6,766 85,750

K 86.84 28.57
R 24.79 43.97
S 0.13 0.15
C 0.86 0.83
P 0.21 0.08

TTR 0.301 0.150
a 1.18 1.27

pop. S 15,958 36,874
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Applications & examples Productivity & lexical diversity

Are these “lexical constants” really constant?
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Applications & examples Practical LNRE modelling

Outline
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Applications & examples Practical LNRE modelling

interactive demo
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Applications & examples Bootstrapping experiments

Outline
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Applications & examples Bootstrapping experiments

Bootstrapping

I An empirical approach to sampling variation:
I take many random samples from the same population
I analyse distribution e.g. of productivity measures

(mean, median, s.d., boxplot, histogram, . . . )
I alternatively, estimate LNRE model from each sample and

analyse distribution of model parameters (Ü later)
I problem: how to obtain the additional samples?

I Bootstrapping (Efron 1979)
I resample from observed data with replacement
I this approach is not suitable for type-token distributions

(resamples underestimate vocabulary size V !)
I Parametric bootstrapping

I use fitted LNRE model to generate samples, i.e. sample from
the population described by the model

I advantage: “correct” parameter values are known
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Applications & examples Bootstrapping experiments

Parametric bootstrapping with LNRE models

I Use simulation experiments
to gain better understanding
of quantitative measures

I LNRE model =
well-defined population

I Parametric bootstrapping
based on LNRE population

I dependence on sample size
I controlled manipulation of

confounding factors
I empirical sampling

distribution Ü variability
I E[P] etc. can be computed

directly in simple cases
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Applications & examples Bootstrapping experiments

Experiment: sample size
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Applications & examples Bootstrapping experiments

Experiment: frequent lexicalized types
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Applications & examples LNRE as Bayesian prior
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Applications & examples LNRE as Bayesian prior

Posterior distribution
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Applications & examples LNRE as Bayesian prior

Posterior distribution
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Challenges Model inference
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Challenges Model inference

How reliable are the fitted models?

Three potential issues:

1. Model assumptions 6= population
(e.g. distribution does not follow a Zipf-Mandelbrot law)

+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)
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Challenges Model inference

Bootstrapping
parametric bootstrapping with 100 replicates

Zipfian slope a = 1/α
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Challenges Model inference

Bootstrapping
parametric bootstrapping with 100 replicates

Offset b = (1− α)/(B · α)
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Challenges Model inference

Bootstrapping
parametric bootstrapping with 100 replicates

fZM probability cutoff A = πS
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Challenges Model inference

Bootstrapping
parametric bootstrapping with 100 replicates

Goodness-of-fit statistic X 2 (model not plausible for X 2 > 11)
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Challenges Model inference

Bootstrapping
parametric bootstrapping with 100 replicates

Population diversity S
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Challenges Model inference

Sample size matters!
Brown corpus is too small for reliable LNRE parameter estimation (bare singulars)
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Challenges Model inference

How reliable are the fitted models?

Three potential issues:
1. Model assumptions 6= population

(e.g. distribution does not follow a Zipf-Mandelbrot law)
+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)
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Challenges Zipf’s law
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Challenges Zipf’s law

How well does Zipf’s law hold?

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 92 / 117



Challenges Zipf’s law

How well does Zipf’s law hold?

I Z-M law seems to fit the first few thousand ranks very well,
but then slope of empirical ranking becomes much steeper

I similar patterns have been found in many different data sets

I Various modifications and extensions have been suggested
(Sichel 1971; Kornai 1999; Montemurro 2001)

I mathematics of corresponding LNRE models are often much
more complex and numerically challenging

I may not have closed form for E[V ], E[Vm], or for the
cumulative type distribution G(ρ) =

∫∞
ρ

g(π) dπ

I E.g. Generalized Inverse Gauss-Poisson (GIGP; Sichel 1971)

g(π) = (2/bc)γ+1

Kγ+1(b) · π
γ−1 · e−

π
c −

b2c
4π
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Challenges Zipf’s law

The GIGP model (Sichel 1971)
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Challenges Non-randomness
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Challenges Non-randomness

How accurate is LNRE-based extrapolation?
(Baroni and Evert 2005)
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Challenges Non-randomness

How accurate is LNRE-based extrapolation?
(Baroni and Evert 2005)
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Challenges Non-randomness

Reasons for poor extrapolation quality

I Major problem: non-randomness of corpus data
I LNRE modelling assumes that corpus is random sample

I Cause 1: repetition within texts
I most corpora use entire text as unit of sampling
I also referred to as “term clustering” or “burstiness”
I well-known in computational linguistics (Church 2000)

I Cause 2: non-homogeneous corpus
I cannot extrapolate from spoken BNC to written BNC
I similar for different genres and domains
I also within single text, e.g. beginning/end of novel
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Challenges Non-randomness

The ECHO correction
(Baroni and Evert 2007)

I Empirical study: quality of extrapolation N0 → 4N0 starting
from random samples of corpus texts

ZM fZM GIGP

Relative error: E[V] vs. V (DEWAC)
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Challenges Non-randomness

The ECHO correction
(Baroni and Evert 2007)

I Assumption: repetition of type within short span is not a new
lexical access or spontaneous formation

I Replace every repetition within span by special type echo
I N, V and V1 are not affected Ü same VGC and P
I ECHO correction as pre-processing step Ü no modifications to

LNRE models or other analysis software needed
I What is an appropriate span size?

Repetition within textual unit (Ü document frequencies)

A fine example. A very fine example. Only the finest examples.
The examples are fine. . . .
The cat sat on the mat. Another very fine cat sat down on the
mat. Two mats are fine. . . .
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Challenges Non-randomness

The ECHO correction
(Baroni and Evert 2007)

I Assumption: repetition of type within short span is not a new
lexical access or spontaneous formation

I Replace every repetition within span by special type echo
I N, V and V1 are not affected Ü same VGC and P
I ECHO correction as pre-processing step Ü no modifications to

LNRE models or other analysis software needed

I What is an appropriate span size?
Repetition within textual unit (Ü document frequencies)

A fine example. echo very echo echo. Only the echo echo.
echo echo are echo. . . .
The cat sat on echo mat. Another very fine echo echo down
echo echo echo. Two echo are echo. . . .
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Challenges Non-randomness

The ECHO correction
(Baroni and Evert 2007)

I ECHO correction: replace every repetition within same text by
special type echo (= document frequencies)
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Challenges Non-randomness

The ECHO correction
(Baroni and Evert 2007)
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Challenges Significance testing
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Challenges Significance testing

Case study: Iris Murdoch & early symptoms of AD
(Evert et al. 2017)

I Renowned British author (1919–1999)
I Published a total of 26 novels, mostly well received by critics
I Murdoch experienced unexpected difficulties composing her

last novel, received “without enthusiasm” (Garrard et al. 2005)
I Diagnosis of Alzheimer’s disease shortly after publication

Conflicting results:
I Decline of lexical diversity

in last novel
(Garrard et al. 2005;
Pakhomov et al. 2011)

I No clear effects found
(Le et al. 2011)

http://news.bbc.co.uk/2/hi/health/4058605.stm
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I Renowned British author (1919–1999)
I Published a total of 26 novels, mostly well received by critics
I Murdoch experienced unexpected difficulties composing her

last novel, received “without enthusiasm” (Garrard et al. 2005)
I Diagnosis of Alzheimer’s disease shortly after publication

Conflicting results:
I Decline of lexical diversity

in last novel
(Garrard et al. 2005;
Pakhomov et al. 2011)

I No clear effects found
(Le et al. 2011)
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Challenges Significance testing

Case study: Iris Murdoch & early symptoms of AD
(Evert et al. 2017)

I Corpus data
I 19 out of 26 novels written by Iris Murdoch
I including 9 last novels, spanning a period of almost 20 years
I acquired as e-books (no errors due to OCR)

I Pre-processing and annotation
I Stanford CoreNLP (Manning et al. 2014) for tokenization,

sentence splitting, POS tagging, and syntactic parsing
I exclude dialogue based on typographic quotation marks

(following Garrard et al. 2005; Pakhomov et al. 2011)

I The challenge
+ assess significance of differences in productivity for single texts
+ might explain conflicting results in prior work
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Challenges Significance testing

Measures of vocabulary diversity = productivity
(Evert et al. 2017)

Yule’s κ

Honoré H
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Challenges Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

As a first step:
I Partition each novel into folds of 10,000 consecutive tokens
å k ≥ 6 folds for each novel (leftover tokens discarded)

Then:

I Evaluate complexity measure of interest on each fold

y1, . . . , yk

I Compute macro-average as overall measure for the entire text

ȳ = y1 + · · ·+ yk
k

I Instead of value x obtained by evaluating measure on full text
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Challenges Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

Significance testing procedure:
I Standard deviation σ of individual folds estimated from data

σ2 ≈ s2 = 1
k − 1

k∑
i=1

(yi − ȳ)2

I Standard deviation of macro average can be computed as

σȳ = σ√
k
≈ s√

k
I Asymptotic 95% confidence intervals are then given by

ȳ ± 1.96 · σȳ

I Comparison of samples with Student’s t-test, based on pooled
cross-validation folds (feasible even for n1 = 1)
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I Standard deviation of macro average can be computed as
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ȳ ± 1.96 · σȳ
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Challenges Significance testing

Productivity measures with confidence intervals
(Evert et al. 2017)

type count / TTR Honoré H

significance test vs. first 17 novels
t = −6.1, df=5.52, p = .0012**
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Productivity measures with confidence intervals
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Challenges Significance testing

Cross-validated measures depend on fold size!
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Challenges Significance testing

Cross-validated measures depend on fold size!
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Challenges Outlook

Outline

Introduction
Motivation
Notation & basic concepts
Zipf’s law
First steps (zipfR)

LNRE models
Population & samples
The mathematics of LNRE

Applications & examples
Productivity &
lexical diversity
Practical LNRE modelling
Bootstrapping experiments
LNRE as Bayesian prior

Challenges
Model inference
Zipf’s law
Non-randomness
Significance testing
Outlook
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Challenges Outlook

Research programme for LNRE models

I Improve efficiency & numerical accuracy of implementation
I numerical integrals instead of differences of Gamma functions
I better parameter estimation (gradient, aggregated spectrum)

I Analyze accuracy of LNRE approximations
I comprehensive simulation experiments, esp. for small samples

I Specify more flexible LNRE population models
I my favourite: piecewise Zipfian type density functions
I Baayen (2001): mixture distributions (different parameters)

I Develop hypothesis tests & confidence intervals
I key challenge: goodness-of-fit vs. confidence region
I prediction intervals for model-based extrapolation

I Simulation experiments for productivity measures
I Can we find a quantitative measure that is robust against

confounding factors and corresponds to intuitive notions of
productivity & lexical diversity?
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Challenges Outlook

Research programme for LNRE models

I Is non-randomness a problem?
I not for morphological productivity Ü echo correction
I tricky to include explicitly in LNRE approach

I Do we need LNRE models for practical applications?
I better productivity measures + empirical sampling variation
I based on cross-validation approach (Evert et al. 2017)

I How important is semantics & context?
I Does it make sense to measure productivity and lexical

diversity purely in terms of type-token distributions?
I e.g. register variation for morphological productivity
I e.g. semantic preferences in productive slots of construction
I type-token ratio 6= complexity of author’s vocabulary

Stefan Evert T1: Zipf’s Law 22 July 2019 | CC-by-sa 111 / 117



Challenges Outlook

Thank you!
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