Counting Words: Introduction

Marco Baroni & Stefan Evert

Málaga, 7 August 2006
Basic terminology

- **N**: sample/corpus size, number of tokens in the sample
- **V**: vocabulary size, number of distinct types in the sample
- **V_m**: type count of spectrum element *m*, number of types in the sample with token frequency *m*
- **V_1**: hapax legomena count, number of types that occur only once in the sample (for hapaxes, \(\text{Count(} \text{types} \text{)} = \text{Count(} \text{tokens} \text{)} \))
- A sample: a b b c a a b a
- **N**: 8; **V**: 3; **V_1**: 1

Rank/frequency profile

- The sample: a b b c a a b a d
- Frequency list ordered by decreasing frequency
 \[
 \begin{array}{c|c}
 t & f \\
 \hline
 a & 4 \\
 b & 3 \\
 c & 1 \\
 d & 1 \\
 \end{array}
 \]
- Replace type labels with ranks to obtain rank/frequency profile:
 \[
 \begin{array}{c|c}
 r & f \\
 \hline
 1 & 4 \\
 2 & 3 \\
 3 & 1 \\
 4 & 1 \\
 \end{array}
 \]
- Allows expression of frequency in function of rank of type

Frequency spectrum

- The sample: a b b c a a b a d
- Frequency classes: 1 (c, d), 3 (b), 4 (a)
- Frequency spectrum:
 \[
 \begin{array}{c|c}
 m & V_m \\
 \hline
 1 & 2 \\
 3 & 1 \\
 4 & 1 \\
 \end{array}
 \]
Rank/frequency profiles and frequency spectra

- From rank/frequency profile to spectrum: count occurrences of each f in profile to obtain V_f values of corresponding spectrum elements.
- From spectrum to rank/frequency profile: given highest f (i.e., m) in a spectrum, the ranks 1 to V_f in the corresponding rank/frequency profile will have frequency f, the ranks $V_f + 1$ to $V_f + V_g$ (where g is the second highest frequency in the spectrum) will have frequency g, etc.

Vocabulary growth curve

- The sample: a b b c a a b a
- N: 1, V: 1, V_1: 1
- N: 3, V: 2, V_1: 1
- N: 5, V: 3, V_1: 1
- N: 8, V: 3, V_1: 1
- (Most VGCs on our slides smoothed with binomial interpolation)
Introduction
Baroni & Evert

Roadmap
Lexical statistics: the basics
Zipf's law
Applications

Zipf's law

Lexical statistics: the basics

Zipf's law

Applications
Productivity in morphology
Productivity beyond morphology
Lexical richness
Conclusion and outlook

Outline

Roadmap
Lexical statistics: the basics
Zipf's law
Applications
Productivity in morphology
Productivity beyond morphology
Lexical richness
Conclusion and outlook

Typical frequency patterns

BNC

Other corpora

Top and bottom ranks in the Brown corpus

<table>
<thead>
<tr>
<th>rank</th>
<th>fq</th>
<th>word</th>
<th>rank range</th>
<th>fq</th>
<th>randomly selected examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62642</td>
<td>the</td>
<td>7967-8522</td>
<td>10</td>
<td>recordings undergone privileges</td>
</tr>
<tr>
<td>2</td>
<td>35971</td>
<td>of</td>
<td>8523-9236</td>
<td>9</td>
<td>Leonard indulge creativity</td>
</tr>
<tr>
<td>3</td>
<td>27831</td>
<td>and</td>
<td>9237-10042</td>
<td>8</td>
<td>unnatural Lolotte authenticity</td>
</tr>
<tr>
<td>4</td>
<td>25608</td>
<td>to</td>
<td>10043-11185</td>
<td>7</td>
<td>diffraction Augusta postpone</td>
</tr>
<tr>
<td>5</td>
<td>21883</td>
<td>a</td>
<td>11186-12510</td>
<td>6</td>
<td>uniformly throttle agglutinin</td>
</tr>
<tr>
<td>6</td>
<td>19474</td>
<td>in</td>
<td>12511-14369</td>
<td>5</td>
<td>Bud Councilman immoral</td>
</tr>
<tr>
<td>7</td>
<td>10292</td>
<td>that</td>
<td>14370-16938</td>
<td>4</td>
<td>verification gleamed groin</td>
</tr>
<tr>
<td>8</td>
<td>10026</td>
<td>is</td>
<td>16939-21076</td>
<td>3</td>
<td>Princes nonspecifically Arger</td>
</tr>
<tr>
<td>9</td>
<td>9887</td>
<td>was</td>
<td>21077-28701</td>
<td>2</td>
<td>blitz pertinence arson</td>
</tr>
<tr>
<td>10</td>
<td>8811</td>
<td>for</td>
<td>28702-53076</td>
<td>1</td>
<td>Salaries Evensen parentheses</td>
</tr>
</tbody>
</table>
Zipf’s law

- Language after language, corpus after corpus, linguistic type after linguistic type...
- same “few giants, many dwarves” pattern is encountered
- Similarity of plots suggests that relation between rank and frequency could be captured by a law
- Nature of relation becomes clearer if we plot $\log f$ in function of $\log r$

Typical frequency patterns

Brown bigrams and trigrams

Zipf’s law

- Straight line in double-logarithmic space corresponds to **power law** for original variables
- This leads to Zipf’s (1949, 1965) famous law:
 $$f(w) = \frac{C}{r(w)^a}$$
- With $a = 1$ and $C = 60,000$, Zipf’s law predicts that most frequent word has frequency 60,000; second most frequent word has frequency 30,000; third word has frequency 20,000...
- and long tail of 80,000 words with frequency between 1.5 and 0.5
Zipf’s law

Logarithmic version

- **Zipf’s power law:**

 \[f(w) = \frac{C}{r(w)^a} \]

- If we take logarithm of both sides, we obtain:

 \[\log f(w) = \log C - a \log r(w) \]

- I.e., Zipf’s law predicts that rank/frequency profiles are straight lines in double logarithmic space, which, we saw, is a reasonable approximation.

- Best fit \(a \) and \(C \) can be found with least squares method.

- Provides intuitive interpretation of \(a \) and \(C \):

 - \(a \) is *slope* determining how fast log frequency decreases with log rank.
 - \(\log C \) is *intercept*, i.e., predicted log frequency of word with rank 1 (log rank 0), i.e., most frequent word.

Fit of Zipf’s law

- At right edge (low frequencies):

 - “Bell-bottom” pattern expected as we are fitting continuous model to discrete frequencies.
 - More worryingly, in large corpora frequency drops more rapidly than predicted by Zipf’s law.

- At left edge (high frequencies):

 - Highest frequencies lower than predicted → Mandelbrot’s correction.

Zipf-Mandelbrot’s law

Mandelbrot 1953

- Mandelbrot’s extra parameter:

 \[f(w) = \frac{C}{(r(w) + b)^a} \]

- Zipf’s law is special case with \(b = 0 \).

- Assuming \(a = 1, C = 60,000, b = 1 \):

 - For word with rank 1, Zipf’s law predicts frequency of 60,000; Mandelbrot’s variation predicts frequency of 30,000.
 - For word with rank 1,000, Zipf’s law predicts frequency of 60; Mandelbrot’s variation predicts frequency of 59.94.

- No longer a straight line in double logarithmic space; finding best fit harder than least squares.

- Zipf-Mandelbrot’s law is basis of LNRE statistical models we will introduce.
Mandelbrot’s adjustment
Fitting the Brown rank/frequency profile

More fits

Consequences

A few mildly interesting things about Zipf(-Mandelbrot)’s law

- a is often close to 1 for word frequency distributions (hence simplified version: $f = C/r$, and -1 slope in log-log space)
- Zipf’s law also provides good fit to frequency spectra
- Monkey languages display Zipf’s law (intuition: few short words have very high chances to be generated; long tail of highly unlikely long words)
- Zipf’s law is everywhere (Li 2002)

- Data sparseness
- Standard statistics, normal approximation not appropriate for lexical type distributions
- V is not stable, will grow with sample size, we need special methods to estimate V and related quantities at arbitrary sizes (including V of whole type population)
V, sample size and the Zipfian distribution

- Significant tail of hapax legomena indicates that chances of encountering new type if we keep sampling are high
- Zipfian distribution implies vocabulary curve that is still growing at largest sample size
Introduction

Baroni & Evert

Roadmap

Lexical statistics:
the basics

Zipf’s law

Typical frequency patterns

Zipf’s law

Consequences

Applications

Productivity in morphology

Productivity beyond morphology

Lexical richness

Conclusion and outlook

Pronouns in Italian

Vocabulary growth curve (zooming in)

ri- in Italian

Vocabulary growth curve

Vocabulary growth curve (zooming in)

Rank/frequency profile

Rank/frequency profile

Vocabulary growth curve

Vocabulary growth curve

Frequency spectrum

Frequency spectrum

Productivity

- In many linguistic problems, rate of growth of VGC is interesting issue in itself
- Baayen (1989 and later) makes link between linguistic notion of productivity and vocabulary growth rate
Introduction
Baroni & Evert
Roadmap
Lexical statistics: the basics
Zipf’s law
Typical frequency patterns
Zipf’s law
Consequences
Applications
Productivity in morphology
Productivity beyond morphology
Lexical richness
Conclusion and outlook

V as a measure of productivity

- Comparable for same \(N \) only!
- Good first approximation, but it is measuring attestedness, not potential:
 - (According to rough BNC counts) \(de- \) verbs have \(V \) of 141, \(un- \) verbs have \(V \) of 119, contra our intuition
 - We want productivity index of pronouns to be 0, not 72!

Baayen’s \(\mathcal{P} \)

- Operationalize productivity of a process as probability that the next token created by the process that we sample is a new word
- This is same as probability that next token in sample is hapax legomenon
- Thus, we can estimate probability of sampling a new word as relative frequency of hapax legomena in our sample:
 \[
 \mathcal{P} = \frac{V_1}{N}
 \]

- Probability to sample token representing type we will never encounter again (token labeled “hapax”) at first stage of sampling (when we are at the beginning of \(N \)-token-sample) is given by the proportion of hapaxes in the whole \(N \)-token-sample divided by the total number of tokens in the sample
- Thus, this must also be probability that last token sampled represents new type
- \(\mathcal{P} \) as productivity measure matches intuition that productivity should measure potential of process to generate new forms

- \(\mathcal{P} \) as vocabulary growth rate
 - \(\mathcal{P} \) measures the potentiality of growth of \(V \) in a very literal way, i.e., it is the growth rate of \(V \), the rate at which vocabulary size increases
 - \(\mathcal{P} \) is (approximation to) the derivative of \(V \) at \(N \), i.e., the slope of the tangent to the vocabulary growth curve at \(N \) (Baayen 2001, pp. 49-50)
 - Again, “rate of growth” of vocabulary generated by word formation process seems good match for intuition about productivity of word formation process
Introduction

Baroni & Evert

Roadmap

Lexical statistics: the basics

Zipf’s law

Typical frequency patterns

Zipf’s law

Consequences

Applications

Productivity in morphology

Productivity beyond morphology

Lexical richness

Conclusion and outlook

Baayen’s P and intuition

<table>
<thead>
<tr>
<th>class</th>
<th>V</th>
<th>V_1</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>it. ri-</td>
<td>1098</td>
<td>346</td>
<td>1,399,898</td>
<td>0.00025</td>
</tr>
<tr>
<td>it. pronouns</td>
<td>72</td>
<td>0</td>
<td>4,313,123</td>
<td>0</td>
</tr>
<tr>
<td>en. un-</td>
<td>119</td>
<td>25</td>
<td>7,618</td>
<td>0.00328</td>
</tr>
<tr>
<td>en. de-</td>
<td>141</td>
<td>16</td>
<td>86,130</td>
<td>0.000185</td>
</tr>
</tbody>
</table>

P and sample size

- We saw that as N increases, V also increases (for at-least-mildly-productive processes)
- Thus, V cannot be compared at different Ns
We saw that as \(N \) increases, \(V \) also increases (for at-least-mildly-productive processes).

Thus, \(V \) cannot be compared at different \(N \)s.

However, growth rate is also systematically decreasing as \(N \) becomes larger.

At the beginning, any word will be a hapax legomenon; as sample increases, hapaxes will be increasingly lower proportion of sample.

A specific instance of the more general problem of “variable constants” (Tweedie and Baayen 1998) in lexical statistics (cf. type/token ratio).
V and P at arbitrary Ns

- In order to compare V and P of processes (and predict how process will develop in larger samples)...
- we need to be able to estimate V and V₁ at arbitrary Ns
- Once we compare P at same N, we might as well compare V₁ directly (since P = V₁/N and N will be constant across compared processes)
- Most intuitive: VGC plot comparison

Productivity beyond morphology

- Measuring generative potential of process/category not limited to morphology
- Applications in lexicology, collocation and idiom studies, morphosyntax, syntax, language technology
- E.g., measure growth of nouns, adjectives, loanwords, relative productivity of two constructions, growth of UNKNOWN lemmas as dataset increases...
- An example: measuring productivity of NP and PP expansions in German TIGER treebank

TIGER expansions

- Types are non-terminal rewrite rules for NP and PP, e.g:
 - NP → ART ADJA NN
 - PP → APPR ART NN
- Frequency of occurrence of expansions collected from about 900,000 tokens (50,000 sentences) of German newspaper text from Frankfurter Rundschau
- http://www.ims.uni-stuttgart.de/projekte/TIGER
Lexical richness

- How many words did Shakespeare know? Are the later Harry Potters more lexically diverse than the early ones?
- Are advanced learners distinguishable from native speakers in terms of vocabulary richness? How many words do 5-year-old children know?
- Can changes in V detect the onset of Alzheimer’s disease? (Garrard et al. 2005)

The Dickens’ datasets

- Dickens corpus: collection of 14 works by Dickens, about 2.8 million tokens
- Oliver Twist: early work (1837-1839), about 160k tokens
- Great Expectations: later work (1860-1861), considered one of Dickens’ masterpieces, about 190k tokens
- Our Mutual Friend: last completed novel (1864-1865), about 330k tokens
Dieds' V

The novels compared

Oliver vs. Great Expectations

Conclusion and outlook

- Productivity, lexical richness, extrapolation of type counts for language engineering purposes...
- all applications require a model of the larger population of types that our sample comes from
- Two reasons to construct model of type population distribution:
 - Population distribution interesting by itself, for theoretical reasons or in NLP applications
 - We know how to simulate sampling from population; thus once we have population model we can obtain estimates of type-related quantities (e.g., V and V_1) at arbitrary Ns
Modeling the population
Productivity

Distribution of types of category of interest necessary to estimate V and V_1 at arbitrary Ns, in order to compare VGCs and \mathcal{P} of different processes

However, type population distribution of word formation process (or other category) might be of interest by itself, as model of a part of the mental lexicon of speaker

Modeling the population
Lexical richness

Lexical richness = V of whole population (how many words did Shakespeare know? Was the lexical repertoire of young Dickens smaller than that of old Dickens? How many words do 5-year-old children know?)

Accurate estimate of population V would solve “variable constant” problem

Sampling from population, in particular to compute VGC, also of interest

Modeling the population
Some NLP applications

Estimate number (and growth rate) of typos, UNKNOWNS (or other target tokens) in larger samples → estimate V and V_1 at arbitrary Ns

Estimate proportion of OOV words under assumption that lexicon contains top n most frequent types (see zipfR tutorial) → requires estimation of V and frequency spectrum at arbitrary Ns (to find out for how many tokens do the top n types account for)

Good-Turing estimation, Bayesian priors → require full type population model

Outlook

We need model of type population distribution

We will use Zipf(-Mandelbrot)’s law as starting point to model how population looks like

TO BE CONTINUED