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gé‘*é?‘*) Where we are at

;NREZO:eIS » We justified an approach to lexical statistics based on
o & Fvert population models (e.g., Zipf-Mandelbrot)

» We discussed random samples and expected values
saile versge » We showed how to estimate model parameters by

comparing observed / expected frequency spectrum
= \Ve need an efficient way to calculate expected values

» for random samples of arbitrary size N
» given a model of the population type probabilities 7y
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Expectation —
sample average

Outline

Computing expectations from the population model
The type density function and LNRE modeling
Zipf-Mandelbrot as LNRE model

Wrapping up

Expected V,, for sample of size N

To calculate E[V,(N)] ...
> Average V), over a large number (n) of samples,

all of them having the same size N

SV VR v

E[Vn(N)] = %

» Mathematically, E[V,(N)] is the limit of this expression
for n — oo (but you can just think of n as very large)
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» We know how to calculate the probability that in a
Baroni & Evert . . . Baroni & Evert
sample of size N, a given type wj (with parameter my)
occurs exactly m times:
ExpeTtation =
e N — oisson samplin
Pik,m = ( )(ﬂk)’"(l — )N 0 i
m
» Which means that it will be counted in class V,, in
approximately n - px m out of n samples
> if nis large enough, this estimate is very accurate
» Taking the sum over all types wj and dividing by n:
V()] =3 picm = 3 () (m"(1 = )
’ m
k k
E“@ Binomial sampling vs. Poisson sampling E‘;‘/f
LNRE models . 3 . ) . LNRE models
Switch to Poisson sampling can be motivated in two ways:
Baroni & Evert Baroni & Evert

» Philosophical:

» Not as unreasonable as it seems: think of the frequency
distribution of nouns in text sample of 1 million running
words (such as the Brown corpus) =» sample size N (=
number of noun tokens) will be different for each sample

Poisson sampling Poisson sampling
» Practical:
» When N is large and 7 small (as with word frequency
distributions), Poisson probabilities are a very good
approximation to binomial probabilities
» In lexical statistics, word frequency distribution models
almost always use Poisson expectations

Binomial sampling vs. Poisson sampling

» What we have just calculated is a binomial expectation,
i.e. the average over samples of the same fixed size N

> arguably, statistically most appropriate

» But mathematically simpler to use Poisson expectation:

B[V ()] = 32 )7 o
k

» here, we sum over samples of various sizes close to N

Poisson expectations for V,, and V

[Va(n)] = Y- T on
)
E[V(N)] =) (1—e M)
k

> E[V] sums over probabilities that wy occurs at least once

1= Now we need to plug in population model for 7y
(we will use the Zipf-Mandelbrot model, of course)



oo
i W‘Ri
</

LNRE models

Baroni & Evert

Plugging in ZM

/g
{2 ‘R\
&/

LNRE models

Baroni & Evert

Pooling types

Plugging in the population model

C

Zipf—MandelbrOt: Tk = m

NC)™ __nC
E[Vin(N)] = ZM re
k

BVa(N)] = D5 (1— e 057)

k

1= This looks ugly even to a mathematician . ..
. and to a computer

The bad news

Vo) =3 G o€

» This looks ugly even to a mathematician

» Are we stuck?
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Pooling types
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The type density function and LNRE modeling

An idea. ..

» Look back at the observed word frequency data
» Huge type frequency lists with many ties in the ranking
» and unstable ordering across different samples
» More robust view on the data by pooling types with the
same frequency = frequency spectrum

» Perhaps we can use a similar approach for the
probabilities of the population model?
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» Different from frequency spectrum because ZM model » Produce histogram with L cells (e.g., L = 1000)
Baroni & Evert Baroni & Evert

stipulates different, unique probabiliy m, for each type k > Cell number j contains types wy with 7y &~ j/L
» Pool types with similar probabilities into cells

> intuition: contribution to E[V,,] should be similar
> e.g. for m = .02501 vs. m; = .02504 » Now plug this into the Poisson expectation formula:

B[V ()] = 32 )T g
k

> The number of such types is the cell count ¢;

= histogram for the distribution of type probabilities

Pooling types Pooling types

> L = 1000 cells 4
» cell j represents types L (N-j)m .
T
with 7y = j/L E[Vm(N)] :ZiLm.ml e L g
— !
> cell count ¢; = area !
of bar in histogram 1= This looks much better (to a mathematician ...)
O.(Z:lO 0.0‘12 04(‘)14 O.(Z:lﬁ 0.0‘18 04(‘)20
s
(e 3 3 () o i
3&‘} Plugging in, 2nd attempt @) Refining the histogram
LNRE models . . LNRE models
» Shorter summation for small L =» easier to calculate .
Baroni & Evert Baroni & Evert |
» But then it is only a coarse approximation: |
» for L = 1000, we pool all types with 7, < .001 together B > L = 1000 cells
» some occcur once in a milion words, some once in 100 » L = 2000 cells
million words, some only once in a billion words » L = 5000 cells

» We can refine the histogram, i.e. increase number L of
cells, but then the summation becomes expensive again

Pooling types Pooling types

» The real advantage: we have moved the population
model equation from 7, to ¢;, and thus out of the ‘ ‘ ‘ ‘ ‘ ‘
. B 0.010 0.012 0.014 0.016 0.018 0.020
exponential and power functions

1 this makes it much easier to plug in a population model

s

N\ [ &
m:

E[Vam(N)] = (L Leti g
Jj=1
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Type density

Refining the histogram

L = 1000 cells
L = 2000 cells
L = 5000 cells

type density function
g(m) =0

vV vV VY

T T T T T T
0.010 0.012 0.014 0.016 0.018 0.020

L

The integral form of expectations

V()] = > B)

m!

j=t

» Mathematically, for L — oo this converges to an integral,
with j/L < m and ¢; < g(7) dn:

(Nm)™
!

—Nm
. . d
T e () dr

V(] = [

» Beautiful! :-)
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The type density function

L = 1000 cells
L = 2000 cells
L = 5000 cells

type density function
g(m) =0

vV vV Vv Y

0.010 0.012 0.014 0.016 0.018 0.020

>

s

Number of types wy with A <7, < B
= area under curve g(m) between A and B

= /AB g(m)dn

Summary time
What did we just do?

vV vVv.v .Yy

Initial formula was too complex
Histogram approximation: simpler but coarse
Get nuances back by increasing number of cells

... but this time we end up with a convenient integral
that we can compute efficiently!
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» We can plug in any function g defined on [0, 1]

» Population model expressed in terms of a type density
function g is what we call a LNRE model (for Large
Number of Rare Events, Baayen 2001)
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Zipf-Mandelbrot as LNRE model

Zipf-Mandelbrot
as LNRE model

e N g(m)dn
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The problem

LNRE models

» You can't just use any old function, of course — g must
satisfy the following conditions:

» g>0
-1
> / m-g(r)dnr =1
0
1= Do they look familiar to you?

» Moreover, we want to use a function that can be derived
from a plausible population model, e.g. Zipf-Mandelbrot

The Zipf-Mandelbrot law as a LNRE model

» We need to reformulate the Zipf-Mandelbrot law in terms
of a type density function (to calculate expectations)
> ZM has 2 parameters (and fZM has 3 parameters)
-» type density function will also have parameters
» same number of parameters, but different interpretation
» cannot use parameter values of the population model!
= Goal is to find a function g(7) that corresponds to a very
fine histogram of the ZM (or fZM) type population

I

T T T T T T
0010 0012 0014 0016 0018 0.020

n
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Type distribution

Zipf-Mandelbrot as a LNRE model

» Find a function g(7) that matches a very fine histogram
of the Zipf-Mandelbrot law (as a population model)

» This could be done directl by trial and error for every
possible combination of ZM parameters a and b: ugly
» we don't even know which family of functions to use
> there must be a better way!

» Luckily, there is an analytical solution

Meet G, the type distribution

» There is a way to derive ZM's g analytically
... but it requires another detour

» We can easily calculate the number of types with © > p,
which we call the type distribution G(p)

» According to the ZM law, for p = 7y there are exactly
k types with = > p (viz. the types wy, ..., wg), i.e.:

G(Tl'k) =k

» From this equation we will be able to work out G

» With the help of G we can then derive the LNRE
formulation of ZM in terms of a type density function g

» NB: upper case G stands for the type distribution, lower
case g for the type density function (standard notation)

(zoR)

N
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The problem
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Type distribution

Summary of the next few steps ...

for the less mathematically inclined among us

> Plug together g(7) and the ZM law for 7
» Math happens
» Out comes ZM formulated in terms of g(m)

> And now ... another detour (sorry!)

Sneak preview: from G to g

1
> G(p) = / g(n) dr

> ff g(m) dm = number of types with A < 7, < B
» G(p) = number of types with p < 7y
> there are no types with m, > 1
w G’ = —g, or equivalently g = —G’
» This is the second fundamental theorem of calculus
> Intuitively:
> If you increase p, say from p to p + x, G decreases
(fewer types = minus sign)
» The amount by which it decreases (number of types
between p and p + x) is proportional to g(p)
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» According to the ZM law, for p = 7y there are exactly
Baroni & Evert . . . A Baroni & Evert C
k types with = > p (viz. the types wy, ..., wy), i.e. G — K
(k + b)2
G(Tl'k) =k

> ZMZk%—)ﬂ'k:ﬁ — G ek
» To get back from 7, to k, all we have to do is to solve
the Zipf-Mandelbrot equation for k, obtaining:

G<(k+cb)a)=k k=Ch (m) % —b

Zipf-Mandelbrot Zipf-Mandelbrot

» Insert ZM formula for the type probabilities 7:

1= Find a function G that satisfies this equation > We can now define G by

> err...

G(p):=Cs-p s —b

and have found a function that satisfies G(my) = k

E\‘&R/ From G to g

@®)  The cutoff parameter B
LNRE models LNRE models 3
) . > We are not quite done yet: we lost one parameter (b)
Baroni & Ever . _1 Baroni & Ever
' g(r)=—-G'(r) with G(x)=C:-7ms—b ‘

g(r) = C* 7!
v (trivial) math happens » According to the Zipf-Mandelbrot law, there are no types
() = (C%/a) . with > 71 (where typically 71 < 1), but g(m =1) >0
& no matter what value « takes
» Simplify by renaming constants: > We need an “upper threshold” parameter

v —a—1 » Obvious choice: 71, but for mathematical reasons the
gm)=C"-m

Zipf-Mandelbrot Zipf-Mandelbrot threshold parameter B close rather than equal to m;
. . a—1
> o= % replaces ZM's a as “slope” parameter (0 < o < 1) > Surprise, surprise: B = b
» C* is normalizing constant determined from constraint = b is back!

/017r~g(7r)dﬂ':1
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LNRE models LNRE models
Baroni & Evert ( ) C . 7T_a_]_ 0 S T S B Baroni & Evert . N -
8\m) = m _
0 ™>B E[Vin(N)] = %e N7 g () drr
O .
B
> shape parameter 0 < a < 1 (“slope”) _ £| ) / (Nx)me~NTr—a=l gr
> (upper) cutoff parameter 0 < B <1 m: OC
l-a — ... =— N y(m—a,NB
> relation to Zipf-Mandelbrot law:
e 1 Lo » The (lower) incomplete Gamma function + is a so-called
LNRE models a= — S= LNRE models . . I
o special function = well-understood by mathematicians
b — l -« » v and m! =T (m+ 1) can be computed efficiently
B-a » This and several similar properties make the LNRE
formulations of ZM and fZM convient and robust
@®)  The LNRE fZM model @®)  Outline
N N
LNRE models LNRE models
Baroni & Evert C . 7T_a_1 A S . S B Baroni & Evert
g(m) = :
0 otherwise
> shape parameter 0 < @ < 1 (“slope”)
» cutoff parameters 0 < A< B <1
> fZM with A =0 = ZM model
l—« .
> C = Ba Aia Wrapping up
» relation to Zipf-Mandelbrot law:
The ZM & fZM
LNRE models 1 1—a« A _ B—a
a= a S = o . Blfoz — Alfoz Wrapping up
C
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Wrapping up

» Wake up! Math is done
» In principle, you can forget about all this
and use LNRE models as black boxes (says Marco)

» However. ..

Things it would be good for you to remember

» In order to apply LNRE model to real-life data you need
a way to estimate model parameters (typically by
matching expected and observed frequency spectrum)

» Aspects you might actively intervene in:

» choose a LNRE model
> details of parameter estimation (cost function etc.)

{“R) Things it would be good for you to remember

LNRE models

» LNRE models: mathematical apparatus with ultimate
goal to derive expectations for V' and frequency
spectrum V,, of extremely type-rich populations

» The components of a LNRE model:

» Population model, expressed as family of type density
functions (determines overall shape of distribution)

» Parameters of the type density function (determine how
steep the curve is and other aspects of its shape)

» Formulas to compute expectations for V' and spectrum
elements V,, in samples of arbitrary size N (we used
Poisson sampling, but there are other options)

Baroni & Evert

Wrapping up

(e .Pe.rforming a LNRE analysis
\) in zipfR

HNRE modets > spc <- read.spc("Brownl00Ok.spc")
Baroni & Evert = |oad observed frequency spectrum from file
» model <- lnre("zm", spc)
= pick ZM model and estimate parameters from spectrum
> summary (model)
1= displays model parameters & goodness-of-fit
EV(model, 1le+6)

= expected V' at 1 million word sample size

v

» spc.exp <- lnre.spc(model, le+6)
= expected spectrum at 1 million word sample size

v

plot(spc.exp)

Wrapping up = plot expected spectrum



