Counting Words: Pre-Processing and Non-Randomness

Marco Baroni & Stefan Evert

Málaga, 11 August 2006
Pre-processing

and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End
Pre-processing

▶ IT IS IMPORTANT!! (Evert and Lüdeling 2001)

Pre-processing and non-randomness
Baroni & Evert

Pre-Processing
Non-Randomness
The End
IT IS IMPORTANT!!! (Evert and Lüdeling 2001)

Automated pre-processing often necessary (13,850 types begin with re- in BNC, 103,941 types begin with ri- in itWaC)
Pre-processing

▸ IT IS IMPORTANT!!! (Evert and Lüdeling 2001)

▸ Automated pre-processing often necessary (13,850 types begin with *re-* in BNC, 103,941 types begin with *ri-* in itWaC)

▸ We can rely on:
 ▸ POS tagging
 ▸ Lemmatization
 ▸ Pattern matching heuristics (e.g., candidate prefixed form must be analyzable as *PRE+VERB*, with *VERB* independently attested in corpus)
Pre-processing

▶ IT IS IMPORTANT!!! (Evert and Lüdeling 2001)

▶ Automated pre-processing often necessary (13,850 types begin with *re-* in BNC, 103,941 types begin with *ri-* in itWaC)

▶ We can rely on:
 ▶ POS tagging
 ▶ Lemmatization
 ▶ Pattern matching heuristics (e.g., candidate prefixed form must be analyzable as $PRE+VERB$, with $VERB$ independently attested in corpus)

▶ However...
The problem with low frequency words

- Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models.
The problem with low frequency words

- Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models
- Automated tools will tend to have lowest performance on low frequency forms:
 - Statistical tools will suffer from lack of relevant training data
 - Manually-crafted tools will probably lack the relevant resources
The problem with low frequency words

- Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models
- Automated tools will tend to have lowest performance on low frequency forms:
 - Statistical tools will suffer from lack of relevant training data
 - Manually-crafted tools will probably lack the relevant resources
- Problems in both directions (under- and overestimation of hapax counts)
The problem with low frequency words

- Correct analysis of low frequency words is fundamental to measure productivity, estimate LNRE models
- Automated tools will tend to have lowest performance on low frequency forms:
 - Statistical tools will suffer from lack of relevant training data
 - Manually-crafted tools will probably lack the relevant resources
- Problems in both directions (under- and overestimation of hapax counts)
- Part of the more general “95% performance” problem
Underestimation of hapaxes

- The Italian TreeTagger lemmatizer is lexicon-based; out-of-lexicon words (e.g., productively formed words containing a prefix) are lemmatized as UNKNOWN
- No prefixed word with dash (ri-cadere) is in lexicon
- Writers are more likely to use dash to mark transparent morphological structure
Productivity of \(ri\)- with and without an extended lexicon

- Pre-processing and non-randomness
- Baroni & Evert

Pre-Processing
Non-Randomness
The End
Overestimation of hapaxes

- “Noise” generates hapax legomena
- The Italian TreeTagger thinks that dashed expressions containing pronoun-like strings are pronouns
- Dashed strings can be anything, including full sentences
- This creates a lot of pseudo-pronoun hapaxes: *tu-tu, parapaponzi-ponzi-pò, altri-da-lui-simili-a-lui*
Productivity of the pronoun class before and after cleaning

Pre-processing and non-randomness
Baroni & Evert

Pre-Processing
Non-Randomness
The End
With:

<table>
<thead>
<tr>
<th>class</th>
<th>V</th>
<th>V_1</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>pronouns</td>
<td>1098</td>
<td>346</td>
<td>1,399,898</td>
<td>0.00025</td>
</tr>
<tr>
<td>ri- pronouns</td>
<td>72</td>
<td>0</td>
<td>4,313,123</td>
<td>0</td>
</tr>
</tbody>
</table>

Without:

<table>
<thead>
<tr>
<th>class</th>
<th>V</th>
<th>V_1</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>pronouns</td>
<td>318</td>
<td>8</td>
<td>1,268,244</td>
<td>0.000006</td>
</tr>
<tr>
<td>ri- pronouns</td>
<td>348</td>
<td>206</td>
<td>4,314,381</td>
<td>0.000048</td>
</tr>
</tbody>
</table>
A final word on pre-processing

▶ IT IS IMPORTANT

Pre-processing and non-randomness
Baroni & Evert

Pre-Processing

Non-Randomness

The End
A final word on pre-processing

- IT IS IMPORTANT
- Often, major roadblock of lexical statistics investigations
Outline

Pre-processing and non-randomness

Pre-Processing

Non-Randomness

The End
Non-randomness

- LNRE modeling based on assumption that our corpora/datasets are \textit{random} samples from the population
Non-randomness

- LNRE modeling based on assumption that our corpora/datasets are *random* samples from the population
- This is obviously not the case
Non-randomness

- LNRE modeling based on assumption that our corpora/datasets are *random* samples from the population
- This is obviously not the case
- Can we pretend that a corpus is random?
Non-randomness

- LNRE modeling based on assumption that our corpora/datasets are **random** samples from the population
- This is obviously not the case
- Can we pretend that a corpus is random?
- What are the consequences of non-randomness?
A Brown-sized random sample from a ZM population estimated with Brown
The real Brown

Pre-processing and non-randomness
Baroni & Evert

Pre-Processing
Non-Randomness
The End
Where does non-randomness come from?

Syntax?
Where does non-randomness come from?

▶ Syntax?
▶ *the the* should be most frequent English bigram
Where does non-randomness come from?

- Syntax?
- *the the* should be most frequent English bigram
- If the problem is due to syntax, randomizing by sentence will not get rid of it (Baayen 2001, ch. 5)
Where does non-randomness come from?

- Not syntax (syntax has short span effect; *the* counts for 10k intervals are OK)
Where does non-randomness come from?

- Not syntax (syntax has short span effect; *the* counts for 10k intervals are OK)
- **Underdispersion** of content-rich words
- The chance of two Noriegas is closer to $\pi/2$ than π^2 (Church 2000)
- *diethylstilbestrol* occurs 3 times in Brown, all in same document (recommendations on feed additives)
Where does non-randomness come from?

- Not syntax (syntax has short span effect; *the* counts for 10k intervals are OK)
- **Underdispersion** of content-rich words
- The chance of two Noriegas is closer to $\pi/2$ than π^2 (Church 2000)
- *diethylstilbestrol* occurs 3 times in Brown, all in same document (recommendations on feed additives)
- Underdispersion will lead to serious *underestimation* of rare type count
- fZM estimated on Brown predicts $S = 115,539$ in English
Underestimating types
Extrapolating Brown VGC with fZM
Assessing extrapolation quality

- We have no way to assess goodness of fit of extrapolation from corpus to larger sample from same population.
- However, we can estimate models on subset of available data, and extrapolate to full corpus size (Evert and Baroni 2006).
- I.e., use corpus as our population, sample from it.
Extrapolation from a random sample of 250k Brown tokens
Goodness of fit to spectrum elements
Based on multivariate chi-squared statistic

<table>
<thead>
<tr>
<th>model</th>
<th>X2</th>
<th>df</th>
<th>p</th>
<th>X2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZM</td>
<td>7,856</td>
<td>14</td>
<td>≪ 0.001</td>
<td>35,346</td>
<td>16</td>
<td>≪ 0.001</td>
</tr>
<tr>
<td>fZM</td>
<td>539</td>
<td>13</td>
<td>≪ 0.001</td>
<td>4,525</td>
<td>16</td>
<td>≪ 0.001</td>
</tr>
<tr>
<td>GIGP</td>
<td>597</td>
<td>13</td>
<td>≪ 0.001</td>
<td>3,449</td>
<td>16</td>
<td>≪ 0.001</td>
</tr>
</tbody>
</table>

Compare to V fit:
Extrapolation from first 250k tokens in corpus

Pre-processing and non-randomness
Baroni & Evert
Goodness of fit to spectrum elements
Based on multivariate chi-squared statistic

<table>
<thead>
<tr>
<th>model</th>
<th>X2</th>
<th>df</th>
<th>p</th>
<th>X2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZM</td>
<td>8,066</td>
<td>14</td>
<td>≪ 0.001</td>
<td>33,6766</td>
<td>16</td>
<td>≪ 0.001</td>
</tr>
<tr>
<td>fZM</td>
<td>1,011</td>
<td>13</td>
<td>≪ 0.001</td>
<td>17,559</td>
<td>16</td>
<td>≪ 0.001</td>
</tr>
<tr>
<td>GIGP</td>
<td>587</td>
<td>13</td>
<td>≪ 0.001</td>
<td>7,815</td>
<td>16</td>
<td>≪ 0.001</td>
</tr>
</tbody>
</table>

Compare to V fit:
The corpus as a (non-)random sample

- In our experiment, we had access to full population (the Brown) and could take random sample from it.
The corpus as a (non-)random sample

- In our experiment, we had access to full population (the Brown) and could take random sample from it.
- In real life, full corpus *is* our sample from the population (e.g., “English”, an author’s mental lexicon, all words generated by a wfp).
The corpus as a (non-)random sample

- In our experiment, we had access to full population (the Brown) and could take random sample from it.
- In real life, full corpus is our sample from the population (e.g., “English”, an author’s mental lexicon, all words generated by a wfp).
- If it is not random, there is nothing we can do about it (randomizing the sample will not help!)
What can we do?

- Abandon lexical statistics
What can we do?

- Abandon lexical statistics
- Live with it

Pre-processing and non-randomness
Baroni & Evert

Pre-Processing
Non-Randomness
The End
What can we do?

- Abandon lexical statistics
- Live with it
- Re-define the population

What can we do?

- Abandon lexical statistics
- Live with it
- Re-define the population

What can we do?

- Abandon lexical statistics
- Live with it
- Re-define the population
What can we do?

- Abandon lexical statistics
- Live with it
- Re-define the population
- Try to account for underdispersion when computing the models (will get mathematically very complicated, but see Baayen 2001, ch. 5)
Not always that bad
Our Mutual Friend

Pre-processing and non-randomness
Baroni & Evert

Pre-Processing
Non-Randomness
The End
Outline

Pre-processing and non-randomness

Baroni & Evert

Pre-Processing

Non-Randomness

The End
What we have done

- **Motivation**: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)
What we have done

- **Motivation**: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)

- **LNRE** modeling:
 - **Population model** with limited number of parameters (e.g., ZM), expressed in terms of type density function
 - Equations to calculate expected V and frequency spectrum in *random samples* of arbitrary size using population model
 - **Estimation** of population parameters via fit of expected elements to observed frequency spectrum
What we have done

- **Motivation**: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)

- **LNRE modeling**:
 - **Population model** with limited number of parameters (e.g., ZM), expressed in terms of type density function
 - Equations to calculate expected V and frequency spectrum in random samples of arbitrary size using population model
 - **Estimation** of population parameters via fit of expected elements to observed frequency spectrum

- **zipfR** package to apply LNRE modeling
What we have done

- **Motivation**: studying distribution and V growth rate of type-rich populations (sample captures only small proportion of types in population)

- **LNRE** modeling:
 - **Population model** with limited number of parameters (e.g., ZM), expressed in terms of type density function
 - Equations to calculate expected V and frequency spectrum in *random samples* of arbitrary size using population model
 - **Estimation** of population parameters via fit of expected elements to observed frequency spectrum

- **zipfR** package to apply LNRE modeling

- **Problems**
What we (and perhaps some of you?) would like to do next

- Study (and deal with) non-randomness

Pre-processing and non-randomness
Baroni & Evert

Pre-Processing
Non-Randomness
The End
What we (and perhaps some of you?) would like to do next

- Study (and deal with) non-randomness
- Better parameter estimation
What we (and perhaps some of you?) would like to do next

- Study (and deal with) non-randomness
- Better parameter estimation
- Improve zipfR (any feature request?)

Use LNRE modeling in applications, e.g.:
- Good-Turing-style estimation
- Productivity beyond morphology
- Better features for machine learning
- Mixture models
What we (and perhaps some of you?) would like to do next

- Study (and deal with) non-randomness
- Better parameter estimation
- Improve zipfR (any feature request?)
- Use LNRE modeling in applications, e.g.:
 - Good-Turing-style estimation
 - Productivity beyond morphology
 - Better features for machine learning
 - Mixture models
That’s All, Folks!

THE END