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and » IT IS IMPORTANT!! (Evert and Liideling 2001)
Baroni & Evert » Automated pre-processing often necessary (13,850 types
, begin with re- in BNC, 103,941 types begin with ri- in
Pre-Processing
itWaQ)

> We can rely on:
» POS tagging
» Lemmatization
» Pattern matching heuristics (e.g., candidate prefixed form
must be analyzable as PRE+VERB, with VERB
independently attested in corpus)

» However. ..
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The problem with low frequency words

Correct analysis of low frequency words is fundamental to
measure productivity, estimate LNRE models
Automated tools will tend to have lowest performance on
low frequency forms:
» Statistical tools will suffer from lack of relevant training
data
» Manually-crafted tools will probably lack the relevant
resources
Problems in both directions (under- and overestimation
of hapax counts)

Part of the more general “95% performance” problem
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» Writers are more likely to use dash to mark transparent
morphological structure
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Baroni & Evert » The ltalian TreeTagger thinks that dashed expressions
containing pronoun-like strings are pronouns

Pre-Processing

» Dashed strings can be anything, including full sentences

» This creates a lot of pseudo-pronoun hapaxes: tu-tu,
PATaApaponzi-ponzi-po, altri-da-lui-simili-a-lui
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no-randorness > With:

Baroni & Evert class v Vi N z
Ti- 1098 | 346 | 1,399,898 | 0.00025

Pre-Processing pronouns 72 0 | 4,313,123 0

» Without:

class V| WV N P
Ti- 318 8 | 1,268,244 | 0.000006
pronouns | 348 | 206 | 4,314,381 | 0.000048
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A final word on pre-processing

> IT IS IMPORTANT

» Often, major roadblock of lexical statistics investigations
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and » LNRE modeling based on assumption that our
non-randomness

. corpora/datasets are random samples from the
Baroni & Evert .

population

o » This is obviously not the case
Randomness » Can we pretend that a corpus is random?

» What are the consequences of non-randomness?
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Where does non-randomness come from?

> Syntax?
» the the should be most frequent English bigram

» If the problem is due to syntax, randomizing by sentence
will not get rid of it (Baayen 2001, ch. 5)
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» The chance of two Noriegas is closer to /2 than 72

(Church 2000)

> diethylstilbestrol occurs 3 times in Brown, all in same
document (recommendations on feed additives)
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» The chance of two Noriegas is closer to 7w/2 than 7

Where does non-randomness come from?

Not syntax (syntax has short span effect; the counts for
10k intervals are OK)

» Underdispersion of content-rich words

2
(Church 2000)

diethylstilbestrol occurs 3 times in Brown, all in same
document (recommendations on feed additives)

Underdispersion will lead to serious underestimation of
rare type count

fZM estimated on Brown predicts S = 115,539 in English



Underestimating types
Extrapolating Brown VGC with fZM

Pre-processing
and
non-randomness

Baroni & Evert

o
Non- s}
Randomness 8

=]

=

o

S

S 4

S

@

> o
= 8 i
> o
o ©

o

S

S

o

<

o

S

s 4

=]

«

© T T T

0e+00 1le+07 2e+07 3e+07 4e+07



i
ipt

4\W

i

Pre-processing
and
non-randomness

Baroni & Evert

Non-
Randomness

Assessing extrapolation quality

» We have no way to assess goodness of fit of extrapolation
from corpus to larger sample from same population

» However, we can estimate models on subset of available
data, and extrapolate to full corpus size (Evert and
Baroni 2006)

> l.e., use corpus as our population, sample from it
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(e Goodness of fit to spectrum elements
\ap} Based on multivariate chi-squared statistic
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o e estimation size max extrapolation size
Baroni & Evert model X2 df p X2 df p

ZM 7,856 14 < 0.001 |35,346 16 < 0.001
- fZM 539 13 < 0.001 | 4,525 16 < 0.001
Randomnes GIGP 597 13 < 0.001 | 3,449 16 < 0.001

Compare to V fit:
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L {R* Goodness of fit to spectrum elements
\\p Based on multivariate chi-squared statistic
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o estimation size max extrapolation size
Baroni & Evert model X2 df p X2 df P
ZM 8,066 14 <« 0.001 | 33,6766 16 < 0.001
Non. fZM 1,011 13 <« 0.001 | 17,559 16 <« 0.001
Randomness GIGP 587 13 «0.001 | 7,815 16 < 0.001

Compare to V fit:
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@@®)  The corpus as a (non-)random sample

Pre-processing

and » In our experiment, we had access to full population (the

non-randomness .
. Brown) and could take random sample from it
Baroni & Evert

» In real life, full corpus is our sample from the population
Non. (e.g., “English”, an author’'s mental lexicon, all words
Randomness generated by a wfp)

» If it is not random, there is nothing we can do about it
(randomizing the sample will not help!)
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What can we do?

vV v vYvY

Abandon lexical statistics
Live with it
Re-define the population

Try to account for underdispersion when computing the
models (will get mathematically very complicated, but
see Baayen 2001, ch. 5)
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d » Motivation: studying distribution and V' growth rate of
type-rich populations (sample captures only small
proportion of types in population)

» LNRE modeling:
» Population model with limited number of parameters

The End (e.g., ZM), expressed in terms of type density function

» Equations to calculate expected V' and frequency
spectrum in random samples of arbitrary size using
population model

» Estimation of population parameters via fit of expected
elements to observed frequency spectrum

Baroni & Evert

» zipfR package to apply LNRE modeling

» Problems
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What we (and perhaps some of you?)
<7 would like to do next
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and » Study (and deal with) non-randomness

non-randomness

Baroni & Evert > Better parameter estimation
» Improve zipfR (any feature request?)
> Use LNRE modeling in applications, e.g.:

» Good-Turing-style estimation

» Productivity beyond morphology

» Better features for machine learning
» Mixture models

The End
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