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Part 1 Motivation

Type-token statistics

I Type-token statistics different from most statistical inference
I not about probability of a specific event
I but about diversity of events and their probability distribution

I Relatively little work in statistical science
I Nor a major research topic in computational linguistics

I very specialized, usually plays ancillary role in NLP
I But type-token statistics appear in wide range of applications

I often crucial for sound analysis

å NLP community needs better awareness of statistical
techniques, their limitations, and available software
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Part 1 Motivation

Some research questions

I How many words did Shakespeare know?
I What is the coverage of my treebank grammar on big data?
I How many typos are there on the Internet?
I Is -ness more productive than -ity in English?
I Are there differences in the productivity of nominal

compounds between academic writing and novels?
I Does Dickens use a more complex vocabulary than Rowling?
I Can a decline in lexical complexity predict Alzheimer’s disease?
I How frequent is a hapax legomenon from the Brown corpus?
I What is appropriate smoothing for my n-gram model?
I Who wrote the Bixby letter, Lincoln or Hay?
I How many different species of . . . are there? (Brainerd 1982)
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Part 1 Motivation

Some research questions

I

I coverage estimates
I

I

I productivity

I lexical complexity & stylometry
I

I prior & posterior distribution
I

I unexpected applications
I
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Part 1 Motivation

Zipf’s law (Zipf 1949)

A) Frequency distributions in natural language are highly skewed
B) Curious relationship between rank & frequency

word r f r · f

the 1. 142,776 142,776
and 2. 100,637 201,274
be 3. 94,181 282,543
of 4. 74,054 296,216

(Dickens)

C) Various explanations of Zipf’s law
I principle of least effort (Zipf 1949)
I optimal coding system, MDL (Mandelbrot 1953, 1962)
I random sequences (Miller 1957; Li 1992; Cao et al. 2017)
I Markov processes Ü n-gram models (Rouault 1978)

D) Language evolution: birth-death-process (Simon 1955)
+ not the main topic today!
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Part 1 Descriptive statistics & notation

Tokens & types

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very
I N = 15: number of tokens = sample size
I V = 7: number of distinct types = vocabulary size

(recently, very, not, otherwise, much, merely, now)

type-frequency list
w fw
recently 1
very 5
not 3
otherwise 1
much 2
merely 2
now 1
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Part 1 Descriptive statistics & notation

Zipf ranking
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I V = 7: number of distinct types = vocabulary size
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Zipf ranking
w r fr
very 1 5
not 2 3
merely 3 2
much 4 2
now 5 1
otherwise 6 1
recently 7 1
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Zipf ranking: adverbs

rank

fr
e
q
u
e
n
c
y

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 10 / 99



Part 1 Descriptive statistics & notation

Zipf ranking

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very
I N = 15: number of tokens = sample size
I V = 7: number of distinct types = vocabulary size

(recently, very, not, otherwise, much, merely, now)

Zipf ranking
w r fr
very 1 5
not 2 3
merely 3 2
much 4 2
now 5 1
otherwise 6 1
recently 7 1 1 2 3 4 5 6 7

0
2

4
6

8
1
0

Zipf ranking: adverbs

rank

fr
e
q
u
e
n
c
y

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 10 / 99



Part 1 Descriptive statistics & notation

A realistic Zipf ranking: the Brown corpus

top frequencies bottom frequencies
r f word rank range f randomly selected examples
1 69836 the 7731 – 8271 10 schedules, polynomials, bleak
2 36365 of 8272 – 8922 9 tolerance, shaved, hymn
3 28826 and 8923 – 9703 8 decreased, abolish, irresistible
4 26126 to 9704 – 10783 7 immunity, cruising, titan
5 23157 a 10784 – 11985 6 geographic, lauro, portrayed
6 21314 in 11986 – 13690 5 grigori, slashing, developer
7 10777 that 13691 – 15991 4 sheath, gaulle, ellipsoids
8 10182 is 15992 – 19627 3 mc, initials, abstracted
9 9968 was 19628 – 26085 2 thar, slackening, deluxe

10 9801 he 26086 – 45215 1 beck, encompasses, second-place
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Part 1 Descriptive statistics & notation

Frequency spectrum
I pool types with f = 1 (hapax legomena), types with f = 2

(dis legomena), . . . , f = m, . . .
I V1 = 3: number of hapax legomena (now, otherwise, recently)
I V2 = 2: number of dis legomena (merely, much)
I general definition: Vm = |{w | fw = m}|

Zipf ranking
w r fr
very 1 5
not 2 3
merely 3 2
much 4 2
now 5 1
otherwise 6 1
recently 7 1

frequency
spectrum
m Vm
1 3
2 2
3 1
5 1

1 2 3 4 5 6 7

frequency spectrum: adverbs

m
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m
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Part 1 Descriptive statistics & notation

A realistic frequency spectrum: the Brown corpus

1 2 3 4 5 6 7 8 9 11 13 15

frequency spectrum: Brown corpus
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Part 1 Descriptive statistics & notation

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

I N = 1, V (N) = 1, V1(N) = 1

I N = 3, V (N) = 3, V1(N) = 3
I N = 7, V (N) = 5, V1(N) = 4
I N = 12, V (N) = 7, V1(N) = 4
I N = 15, V (N) = 7, V1(N) = 3
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Part 1 Descriptive statistics & notation

A realistic vocabulary growth curve: the Brown corpus
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Part 1 Descriptive statistics & notation

Vocabulary growth in authorship attribution

I Authorship attribution by n-gram tracing applied to the case
of the Bixby letter (Grieve et al. submitted)

I Word or character n-grams in disputed text are compared
against large “training” corpora from candidate authors

 

Figure 1 One Gettysburg Address 2-word n-gram traces 322 

 323 
 324 

In addition to analysing 2-word n-grams, we also analysed 1-, 3- and 4-word n-grams, 325 

based on the average percentage of n-grams seen in 50 random 260,000-word samples of 326 

texts. The analysis was only run up to 4-word n-grams because from that point onward the Hay 327 

corpus contains none of the n-grams in the Gettysburg Address. The 3- and 4-word n-gram 328 

analyses also correctly attributed the Gettysburg Address to Lincoln: 18% of 3-grams for Lincoln 329 

vs. 14% of 3-grams for Hay and 2% of 4-grams for Lincoln vs. 0% of 4-grams for Hay. The 1-330 

word n-gram analysis, however, incorrectly attributed the Gettysburg Address to Hay. Figure 3 331 

presents the aggregated n-gram traces for all analyses. Notably, the 2-, 3- and 4-word n-gram 332 

analyses, which correctly attributed the document to Lincoln, appear to be far more definitive 333 

than the incorrect 1-word n-gram analysis.  334 
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Part 1 Descriptive statistics & notation

Observing Zipf’s law
across languages and different linguistic units
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Part 1 Descriptive statistics & notation

Observing Zipf’s law
The Italian prefix ri- in the la Repubblica corpus
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Part 1 Descriptive statistics & notation

Observing Zipf’s law

I Straight line in double-logarithmic space corresponds
to power law for original variables

I This leads to Zipf’s (1949; 1965) famous law:

fr = C
ra

I If we take logarithm on both sides, we obtain:

I Intuitive interpretation of a and C :
I a is slope determining how fast log frequency decreases
I logC is intercept, i.e. log frequency of most frequent word

(r = 1 Ü log r = 0)
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Part 1 Descriptive statistics & notation

Observing Zipf’s law
Least-squares fit = linear regression in log-space (Brown corpus)
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Part 1 Descriptive statistics & notation

Zipf-Mandelbrot law
Mandelbrot (1953, 1962)

I Mandelbrot’s extra parameter:

fr = C
(r + b)a

I Zipf’s law is special case with b = 0

I Assuming a = 1, C = 60,000, b = 1:
I For word with rank 1, Zipf’s law predicts frequency of 60,000;

Mandelbrot’s variation predicts frequency of 30,000
I For word with rank 1,000, Zipf’s law predicts frequency of 60;

Mandelbrot’s variation predicts frequency of 59.94

I Zipf-Mandelbrot law forms basis of statistical LNRE models
I ZM law derived mathematically as limiting distribution of

vocabulary generated by a character-level Markov process
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Part 1 Descriptive statistics & notation

Zipf-Mandelbrot law
Non-linear least-squares fit (Brown corpus)
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Part 1 Some examples (zipfR)
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Part 1 Some examples (zipfR)

zipfR
Evert and Baroni (2007)

I http://zipfR.R-Forge.R-Project.org/
I Conveniently available from CRAN repository
I Package vignette = gentle tutorial introduction
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Part 1 Some examples (zipfR)

First steps with zipfR

I Set up a folder for this course, and make sure it is your
working directory in R (preferably as an RStudio project)

I Install the most recent version of the zipfR package
I Package, handouts, code samples & data sets available from

http://zipfr.r-forge.r-project.org/lrec2018.html

> library(zipfR)

> ?zipfR # documentation entry point

> vignette("zipfr-tutorial") # read the zipfR tutorial
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Part 1 Some examples (zipfR)

Loading type-token data

I Most convenient input: sequence of tokens as text file in
vertical format (“one token per line”)

+ mapped to appropriate types: normalized word forms, word
pairs, lemmatized, semantic class, n-gram of POS tags, . . .

+ language data should always be in UTF-8 encoding!
+ large files can be compressed (.gz, .bz2, .xz)

I Sample data: brown_adverbs.txt on tutorial homepage
I lowercased adverb tokens from Brown corpus (original order)

+ download and save to your working directory

> adv <- readLines("brown_adverbs.txt", encoding="UTF-8")

> head(adv, 30) # mathematically, a ‘‘vector’’ of tokens
> length(adv) # sample size = 52,037 tokens
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Part 1 Some examples (zipfR)

Descriptive statistics: type-frequency list

> adv.tfl <- vec2tfl(adv)
> adv.tfl

k f type
1 1 4859 not
2 2 2084 n’t
3 3 1464 so
4 4 1381 only
5 5 1374 then
6 6 1309 now
7 7 1134 even
8 8 1089 as

...
...

...
N V

52037 1907

> N(adv.tfl) # sample size
> V(adv.tfl) # type count
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Part 1 Some examples (zipfR)

Descriptive statistics: frequency spectrum

> adv.spc <- tfl2spc(adv.tfl) # or directly with vec2spc
> adv.spc

m Vm
1 1 762
2 2 260
3 3 144
4 4 99
5 5 69
6 6 50
7 7 40
8 8 34

...
...

N V
52037 1907

> N(adv.spc) # sample size
> V(adv.spc) # type count
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Part 1 Some examples (zipfR)

Descriptive statistics: vocabulary growth

I VGC lists vocabulary size V (N) at different sample sizes N
I Optionally also spectrum elements Vm(N) up to m.max

> adv.vgc <- vec2vgc(adv, m.max=2)

I Visualize descriptive statistics with plot method

> plot(adv.tfl) # Zipf ranking
> plot(adv.tfl, log="xy") # logarithmic scale recommended

> plot(adv.spc) # barplot of frequency spectrum

> plot(adv.vgc, add.m = 1:2) # vocabulary growth curve
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Part 1 Some examples (zipfR)

Further example data sets

?Brown words from Brown corpus
?BrownSubsets various subsets

?Dickens words from novels by Charles Dickens
?ItaPref Italian word-formation prefixes
?TigerNP NP and PP patterns from German Tiger treebank

?Baayen2001 frequency spectra from Baayen (2001)
?EvertLuedeling2001 German word-formation affixes (manually

corrected data from Evert and Lüdeling 2001)

Practice:
I Explore these data sets with descriptive statistics
I Try different plot options (from help pages ?plot.tfl,

?plot.spc, ?plot.vgc)
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Part 1 LNRE models: intuition

Outline

Part 1
Motivation
Descriptive statistics & notation
Some examples (zipfR)
LNRE models: intuition
LNRE models: mathematics

Part 2
Applications & examples (zipfR)
Limitations
Non-randomness
Conclusion & outlook
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Part 1 LNRE models: intuition

Motivation

I Interested in productivity of affix, vocabulary of author, . . . ;
not in a particular text or sample

+ statistical inference from sample to population

I Discrete frequency counts are difficult to capture with
generalizations such as Zipf’s law

I Zipf’s law predicts many impossible types with 1 < fr < 2
+ population does not suffer from such quantization effects
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Part 1 LNRE models: intuition

LNRE models

I This tutorial introduces the state-of-the-art LNRE approach
proposed by Baayen (2001)

I LNRE = Large Number of Rare Events

I LNRE uses various approximations and simplifications to
obtain a tractable and elegant model

I Of course, we could also estimate the precise discrete
distributions using MCMC simulations, but . . .
1. LNRE model usually minor component of complex procedure
2. often applied to very large samples (N > 1 M tokens)
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Part 1 LNRE models: intuition

The LNRE population

I Population: set of S types wi with occurrence probabilities πi
I S = population diversity can be finite or infinite (S =∞)
I Not interested in specific types Ü arrange by decreasing

probability: π1 ≥ π2 ≥ π3 ≥ · · ·
+ impossible to determine probabilities of all individual types

I Normalization: π1 + π2 + . . .+ πS = 1

I Need parametric statistical model to describe full population
(esp. for S =∞), i.e. a function i 7→ πi

I type probabilities πi cannot be estimated reliably from a
sample, but parameters of this function can

I NB: population index i 6= Zipf rank r
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Part 1 LNRE models: intuition

Examples of population models
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Part 1 LNRE models: intuition

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency
distributions?
I We have already seen that the Zipf-Mandelbrot law captures

the distribution of observed frequencies very well

I Re-phrase the law for type probabilities:

πi := C
(i + b)a

I Two free parameters: a > 1 and b ≥ 0
I C is not a parameter but a normalization constant,

needed to ensure that
∑

i πi = 1
I This is the Zipf-Mandelbrot population model
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Part 1 LNRE models: intuition

The parameters of the Zipf-Mandelbrot model
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Part 1 LNRE models: intuition

The parameters of the Zipf-Mandelbrot model
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Part 1 LNRE models: intuition

The finite Zipf-Mandelbrot model
Evert (2004)

I Zipf-Mandelbrot population model characterizes an infinite
type population: there is no upper bound on i , and the type
probabilities πi can become arbitrarily small

I π = 10−6 (once every million words), π = 10−9 (once every
billion words), π = 10−15 (once on the entire Internet),
π = 10−100 (once in the universe?)

I The finite Zipf-Mandelbrot model stops after first S types
I Population diversity S becomes a parameter of the model
→ the finite Zipf-Mandelbrot model has 3 parameters

Abbreviations:
I ZM for Zipf-Mandelbrot model
I fZM for finite Zipf-Mandelbrot model
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Part 1 LNRE models: intuition

Sampling from a population model

Assume we believe that the population we are interested in can be
described by a Zipf-Mandelbrot model:
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Use computer simulation to generate random samples:
I Draw N tokens from the population such that in

each step, type wi has probability πi to be picked
I This allows us to make predictions for samples (= corpora)

of arbitrary size N
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Part 1 LNRE models: intuition

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .

time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 43 / 99



Part 1 LNRE models: intuition

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 43 / 99



Part 1 LNRE models: intuition

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 43 / 99



Part 1 LNRE models: intuition

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 43 / 99



Part 1 LNRE models: intuition

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 43 / 99



Part 1 LNRE models: intuition

Samples: type frequency list & spectrum

rank r fr type i
1 37 6
2 36 1
3 33 3
4 31 7
5 31 10
6 30 5
7 28 12
8 27 2
9 24 4

10 24 16
11 23 8
12 22 14
...

...
...

m Vm
1 83
2 22
3 20
4 12
5 10
6 5
7 5
8 3
9 3
10 3
...

...

sample #1
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Part 1 LNRE models: intuition

Samples: type frequency list & spectrum

rank r fr type i
1 39 2
2 34 3
3 30 5
4 29 10
5 28 8
6 26 1
7 25 13
8 24 7
9 23 6

10 23 11
11 20 4
12 19 17
...

...
...

m Vm
1 76
2 27
3 17
4 10
5 6
6 5
7 7
8 3
10 4
11 2
...

...

sample #2
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Part 1 LNRE models: intuition

Random variation in type-frequency lists
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Part 1 LNRE models: intuition

Random variation: frequency spectrum

Sample #1
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Part 1 LNRE models: intuition
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Part 1 LNRE models: intuition

Random variation: frequency spectrum
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Part 1 LNRE models: intuition

Random variation: vocabulary growth curve
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Part 1 LNRE models: intuition

Expected values

I There is no reason why we should choose a particular sample
to compare to the real data or make a prediction – each one is
equally likely or unlikely

I Take the average over a large number of samples, called
expected value or expectation in statistics

I Notation: E
[
V (N)

]
and E

[
Vm(N)

]
I indicates that we are referring to expected values for a sample

of size N
I rather than to the specific values V and Vm

observed in a particular sample or a real-world data set

I Expected values can be calculated efficiently without
generating thousands of random samples
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Part 1 LNRE models: intuition

The expected frequency spectrum
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Part 1 LNRE models: intuition

The expected vocabulary growth curve
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Part 1 LNRE models: intuition

Prediction intervals for the expected VGC
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“Confidence intervals” indicate predicted sampling distribution:
+ for 95% of samples generated by the LNRE model, VGC will

fall within the range delimited by the thin red lines
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Part 1 LNRE models: intuition

Parameter estimation by trial & error

observed
ZM model

a == 1.5,,  b == 7.5
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Part 1 LNRE models: intuition

Parameter estimation by trial & error
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Part 1 LNRE models: intuition

Parameter estimation by trial & error
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Part 1 LNRE models: intuition

Parameter estimation by trial & error
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Part 1 LNRE models: intuition

Parameter estimation by trial & error

observed
ZM model

a == 2,,  b == 550
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Part 1 LNRE models: intuition

Automatic parameter estimation

observed
expected

a == 2.39,,  b == 1968.49
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I By trial & error we found a = 2.0 and b = 550
I Automatic estimation procedure: a = 2.39 and b = 1968
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Part 1 LNRE models: mathematics

Outline

Part 1
Motivation
Descriptive statistics & notation
Some examples (zipfR)
LNRE models: intuition
LNRE models: mathematics

Part 2
Applications & examples (zipfR)
Limitations
Non-randomness
Conclusion & outlook
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Part 1 LNRE models: mathematics

The sampling model

I Draw random sample of N tokens from LNRE population
I Sufficient statistic: set of type frequencies {fi}

I because tokens of random sample have no ordering
I Joint multinomial distribution of {fi}:

Pr({fi = ki} |N) = N!
k1! · · · kS !π

k1
1 · · ·π

kS
S

I Approximation: do not condition on fixed sample size N
I N is now the average (expected) sample size

I Random variables fi have independent Poisson distributions:

Pr(fi = ki) = e−Nπi (Nπi)ki
ki !
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Part 1 LNRE models: mathematics

Frequency spectrum

I Key problem: we cannot determine fi in observed sample
I becasue we don’t know which type wi is
I recall that population ranking fi 6= Zipf ranking fr

I Use spectrum {Vm} and sample size V as statistics
I contains all information we have about observed sample

I Can be expressed in terms of indicator variables

I[fi=m] =
{
1 fi = m
0 otherwise

Vm =
S∑
i=1

I[fi=m]

V =
S∑
i=1

I[fi>0] =
S∑
i=1

(
1− I[fi=0]

)
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Part 1 LNRE models: mathematics

The expected spectrum

I It is easy to compute expected values for the frequency
spectrum (and variances because the fi are independent)

E[I[fi=m]] = Pr(fi = m) = e−Nπi (Nπi)m
m!

E[Vm] =
S∑
i=1

E[I[fi=m]] =
S∑
i=1

e−Nπi (Nπi)m
m!

E[V ] =
S∑
i=1

E
[
1− I[fi=0]

]
=

S∑
i=1

(
1− e−Nπi

)
I NB: Vm and V are not independent because they are derived

from the same random variables fi
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Part 1 LNRE models: mathematics

Sampling distribution of Vm and V

I Joint sampling distribution of {Vm} and V is complicated
I Approximation: V and {Vm} asymptotically follow a

multivariate normal distribution
I motivated by the multivariate central limit theorem:

sum of many independent variables I[fi=m]
I Usually limited to first spectrum elements, e.g. V1, . . . ,V15

I approximation of discrete Vm by continuous distribution
suitable only if E[Vm] is sufficiently large

I Parameters of multivariate normal:
µµµ = (E[V ],E[V1],E[V2], . . .) and ΣΣΣ = covariance matrix

Pr
(
(V ,V1, . . . ,Vk) = v

)
∼ e− 1

2 (v−µµµ)TΣΣΣ−1(v−µµµ)√
(2π)k+1 det ΣΣΣ
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Part 1 LNRE models: mathematics

Type density function

I Discrete sums of probabilities in E[V ], E[Vm], ldots are
inconvenient and computationally expensive

I Approximation: continuous type density function g(π)

|{wi | a ≤ πi ≤ b}| =
∫ b

a
g(π) dπ

∑
{πi | a ≤ πi ≤ b} =

∫ b

a
πg(π) dπ

I Normalization constraint:∫ ∞
0

πg(π) dπ = 1

I Good approximation for low-probability types, but probability
mass of w1,w2, . . . “smeared out” over range
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Part 1 LNRE models: mathematics

Type density function
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Part 1 LNRE models: mathematics

ZM and fZM as LNRE models

I Discrete Zipf-Mandelbrot population

πi := C
(i + b)a for i = 1, . . . ,S

I Corresponding type density function (Evert 2004)

g(π) =
{
C · π−α−1 A ≤ π ≤ B
0 otherwise

with parameters
I α = 1/a (0 < α < 1)
I B = b · α/(1− α)
I 0 ≤ A < B determines S (ZM with S =∞ for A = 0)

+ C is a normalization factor, not a parameter
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Part 1 LNRE models: mathematics

ZM and fZM as LNRE models
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Part 1 LNRE models: mathematics

Expectations as integrals

I Expected values can now be expressed as integrals over g(π)

E[Vm] =
∫ ∞
0

(Nπ)m
m! e−Nπg(π) dπ

E[V ] =
∫ ∞
0

(
1− e−Nπ

)
g(π) dπ

I Reduce to simple closed form for ZM (approximation)

E[Vm] = C
m! · N

α · Γ(m − α)

E[V ] = C · Nα · Γ(1− α)
α

I fZM and exact solution for ZM with incompl. Gamma function
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Part 1 LNRE models: mathematics

Parameter estimation from training corpus

I For ZM, α = E[V1]
E[V ] ≈

V1
V can be estimated directly,

but prone to overfitting
I General parameter fitting by MLE:

maximize likelihood of observed spectrum v

max
α,A,B

Pr
(
(V ,V 1, . . . ,Vk) = v

∣∣α,A,B)

I Multivariate normal approximation:

min
α,A,B

(v−µµµ)TΣΣΣ−1(v−µµµ)

I Minimization by gradient descent (BFGS, CG) or simplex
search (Nelder-Mead)
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Part 1 LNRE models: mathematics

Parameter estimation from training corpus
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Part 1 LNRE models: mathematics

Parameter estimation from training corpus
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Part 1 LNRE models: mathematics

Goodness-of-fit
(Baayen 2001, Sec. 3.3)

I How well does the fitted model explain the observed data?
I For multivariate normal distribution:

X 2 = (V−µµµ)TΣΣΣ−1(V−µµµ) ∼ χ2k+1

where V = (V ,V1, . . . ,Vk)

å Multivariate chi-squared test of goodness-of-fit
I replace V by observed v Ü test statistic x2
I must reduce df = k + 1 by number of estimated parameters

I NB: significant rejection of the LNRE model for p < .05

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 67 / 99



Part 1 LNRE models: mathematics

Goodness-of-fit
(Baayen 2001, Sec. 3.3)

I How well does the fitted model explain the observed data?
I For multivariate normal distribution:

X 2 = (V−µµµ)TΣΣΣ−1(V−µµµ) ∼ χ2k+1

where V = (V ,V1, . . . ,Vk)
å Multivariate chi-squared test of goodness-of-fit

I replace V by observed v Ü test statistic x2
I must reduce df = k + 1 by number of estimated parameters

I NB: significant rejection of the LNRE model for p < .05

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 67 / 99



Part 1 LNRE models: mathematics

Coffee break!
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Part 2 Applications & examples (zipfR)

Outline

Part 1
Motivation
Descriptive statistics & notation
Some examples (zipfR)
LNRE models: intuition
LNRE models: mathematics

Part 2
Applications & examples (zipfR)
Limitations
Non-randomness
Conclusion & outlook
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Part 2 Applications & examples (zipfR)

Measuring morphological productivity
example from Evert and Lüdeling (2001)
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Part 2 Applications & examples (zipfR)

Quantitative measures of productivity
(Tweedie and Baayen 1998; Baayen 2001)

I Baayen’s (1991) productivity index P
(slope of vocabulary growth curve)

P = V1

N

I TTR = type-token ratio

TTR = V
N

I Zipf-Mandelbrot slope

a

I Herdan’s law (1964)

C = log V
log N

I Yule (1944) / Simpson (1949)

K = 10 000 ·
∑

m m2Vm − N
N2

I Guiraud (1954)

R = V√
N

I Sichel (1975)

S = V2

V

I Honoré (1979)

H = log N
1− V1

V
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Part 2 Applications & examples (zipfR)

Productivity measures for bare singulars in the BNC

spoken written

V 2,039 12,876
N 6,766 85,750

K 86.84 28.57
R 24.79 43.97
S 0.13 0.15
C 0.86 0.83
P 0.21 0.08

TTR 0.301 0.150
a 1.18 1.27

pop. S 15,958 36,874
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Part 2 Applications & examples (zipfR)

Are these “lexical constants” really constant?
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Part 2 Applications & examples (zipfR)

Simulation experiments based on LNRE models

I Systematic study of size dependence and other aspects of
productivity measures based on samples from LNRE model

I LNRE model Ü well-defined population
I Random sampling helps to assess variability of measures
I Expected values E[P] etc. can often be computed directly

(or approximated) Ü computationally efficient
å LNRE models as tools for understanding productivity measures
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Part 2 Applications & examples (zipfR)

Simulation: sample size
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Part 2 Applications & examples (zipfR)

Simulation: frequent lexicalized types
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Part 2 Applications & examples (zipfR)

interactive demo
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Part 2 Applications & examples (zipfR)

Posterior distribution
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Part 2 Applications & examples (zipfR)

Posterior distribution
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Part 2 Limitations

Outline
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Descriptive statistics & notation
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Part 2 Limitations

How reliable are the fitted models?

Three potential issues:

1. Model assumptions 6= population
(e.g. distribution does not follow a Zipf-Mandelbrot law)

+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 80 / 99



Part 2 Limitations

How reliable are the fitted models?

Three potential issues:
1. Model assumptions 6= population

(e.g. distribution does not follow a Zipf-Mandelbrot law)
+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 80 / 99



Part 2 Limitations

How reliable are the fitted models?

Three potential issues:
1. Model assumptions 6= population

(e.g. distribution does not follow a Zipf-Mandelbrot law)
+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 80 / 99



Part 2 Limitations

How reliable are the fitted models?

Three potential issues:
1. Model assumptions 6= population

(e.g. distribution does not follow a Zipf-Mandelbrot law)
+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 80 / 99



Part 2 Limitations

How reliable are the fitted models?

Three potential issues:
1. Model assumptions 6= population

(e.g. distribution does not follow a Zipf-Mandelbrot law)
+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 80 / 99



Part 2 Limitations

Bootstrapping

I An empirical approach to sampling variation:
I take many random samples from the same population
I estimate LNRE model from each sample
I analyse distribution of model parameters, goodness-of-fit, etc.

(mean, median, s.d., boxplot, histogram, . . . )
I problem: how to obtain the additional samples?

I Bootstrapping (Efron 1979)
I resample from observed data with replacement
I this approach is not suitable for type-token distributions

(resamples underestimate vocabulary size V !)
I Parametric bootstrapping

I use fitted model to generate samples, i.e. sample from the
population described by the model

I advantage: “correct” parameter values are known
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Part 2 Limitations

Bootstrapping
parametric bootstrapping with 100 replicates

Zipfian slope a = 1/α
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Part 2 Limitations

Bootstrapping
parametric bootstrapping with 100 replicates

Offset b = (1− α)/(B · α)
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Part 2 Limitations

Bootstrapping
parametric bootstrapping with 100 replicates

fZM probability cutoff A = πS
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Part 2 Limitations

Bootstrapping
parametric bootstrapping with 100 replicates

Goodness-of-fit statistic X 2 (model not plausible for X 2 > 11)
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Part 2 Limitations

Bootstrapping
parametric bootstrapping with 100 replicates

Population diversity S
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Part 2 Limitations

Bootstrapping
parametric bootstrapping with 100 replicates
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Part 2 Limitations

Sample size matters!
Brown corpus is too small for reliable LNRE parameter estimation (bare singulars)
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Part 2 Limitations

How reliable are the fitted models?

Three potential issues:
1. Model assumptions 6= population

(e.g. distribution does not follow a Zipf-Mandelbrot law)
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(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
+ especially critical for small samples (N < 10,000)
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Part 2 Limitations

How well does Zipf’s law hold?

I Z-M law seems to fit the first few thousand ranks very well,
but then slope of empirical ranking becomes much steeper

I similar patterns have been found in many different data sets

I Various modifications and extensions have been suggested
(Sichel 1971; Kornai 1999; Montemurro 2001)

I mathematics of corresponding LNRE models are often much
more complex and numerically challenging

I may not have closed form for E[V ], E[Vm], or for the
cumulative type distribution G(ρ) =

∫∞
ρ

g(π) dπ

I E.g. Generalized Inverse Gauss-Poisson (GIGP; Sichel 1971)

g(π) = (2/bc)γ+1

Kγ+1(b) · π
γ−1 · e−

π
c −

b2c
4π
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Part 2 Limitations

The GIGP model (Sichel 1971)

1e-09 1e-07 1e-05 1e-03

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0 Type density of LNRE model

occurrence probability π

ty
p

e
 d

e
n

s
ity

 g
(π
)

fZM

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 87 / 99



Part 2 Limitations

The GIGP model (Sichel 1971)

1e-09 1e-07 1e-05 1e-03

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0 Type density of LNRE model

occurrence probability π

ty
p

e
 d

e
n

s
ity

 g
(π
)

fZM
GIGP

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 87 / 99



Part 2 Non-randomness
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Part 2 Non-randomness

How accurate is LNRE-based extrapolation?
(Baroni and Evert 2005)
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Part 2 Non-randomness

Reasons for poor extrapolation quality

I Major problem: non-randomness of corpus data
I LNRE modelling assumes that corpus is random sample

I Cause 1: repetition within texts
I most corpora use entire text as unit of sampling
I also referred to as “term clustering” or “burstiness”
I well-known in computational linguistics (Church 2000)

I Cause 2: non-homogeneous corpus
I cannot extrapolate from spoken BNC to written BNC
I similar for different genres and domains
I also within single text, e.g. beginning/end of novel
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Part 2 Non-randomness

The ECHO correction
(Baroni and Evert 2007)

I Empirical study: quality of extrapolation N0 → 4N0 starting
from random samples of corpus texts
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Part 2 Non-randomness

The ECHO correction
(Baroni and Evert 2007)

I ECHO correction: replace every repetition within same text by
special type echo (= document frequencies)

ZM fZM GIGP fZM
echo

GIGP
echo

GIGP
partition

Relative error: E[V] vs. V (DEWAC)

re
la

tiv
e 

er
ro

r 
(%

)

−
20

−
10

0
10

20

●

● ●

● ●

●

●

N0

2N0

3N0

0 5000 10000 15000
0

5
10

15

Goodness−of−fit vs. accuracy for V (3N0)

X2

rM
S

E
    (

%
)

●

●
●

●

●●

●

●●

● standard

echo
model
partition−
adjusted

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 92 / 99



Part 2 Non-randomness

The ECHO correction
(Baroni and Evert 2007)

I ECHO correction: replace every repetition within same text by
special type echo (= document frequencies)

ZM fZM GIGP fZM
echo

GIGP
echo

GIGP
partition

Relative error: E[V] vs. V (BNC)

re
la

tiv
e 

er
ro

r 
(%

)

−
40

−
20

0
20

40

●

● ●

●
●

●

●

N0

2N0

3N0

0 5000 10000 15000
0

5
10

15

Goodness−of−fit vs. accuracy for V (3N0)

X2

rM
S

E
    (

%
)

●

●
●

●

●●

●

●●

● standard

echo
model
partition−
adjusted

Stefan Evert T1: Zipf’s Law 7 May 2018 | CC-by-sa 92 / 99



Part 2 Conclusion & outlook
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Part 2 Conclusion & outlook

Future plans for zipfR

I More efficient LNRE sampling & parametric bootstrapping
I Improve parameter estimation (minimization algorithm)
I Better computation accuracy by numerical integration
I Extended Zipf-Mandelbrot LNRE model: piecewise power law
I Development of robust and interpretable productivity

measures, using LNRE simulations
I Computationally expensive modelling (MCMC) for accurate

inference from small samples
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Part 2 Conclusion & outlook

Thank you!
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