What Every Computational Linguist Should Know About Type-Token Distributions and Zipf's Law Tutorial 1, 7 May 2018

Stefan Evert FAU Erlangen-Nürnberg

http://zipfr.r-forge.r-project.org/lrec2018.html

Licensed under CC-by-sa version 3.0

Stefan Evert

T1: Zipf's Law

Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2

Applications & examples (zipfR) Limitations Non-randomness Conclusion & outlook

Outline

Part 1

Motivation

Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2

Applications & examples (zipfR) Limitations Non-randomness Conclusion & outlook

э

∃ ► < ∃ ►</p>

Image: A matrix

Type-token statistics

- Type-token statistics different from most statistical inference
 - not about probability of a specific event
 - but about diversity of events and their probability distribution
- Relatively little work in statistical science
- Nor a major research topic in computational linguistics
 - very specialized, usually plays ancillary role in NLP
- But type-token statistics appear in wide range of applications
 - often crucial for sound analysis
- NLP community needs better awareness of statistical techniques, their limitations, and available software

Some research questions

- How many words did Shakespeare know?
- What is the coverage of my treebank grammar on big data?
- How many typos are there on the Internet?
- Is -ness more productive than -ity in English?
- Are there differences in the productivity of nominal compounds between academic writing and novels?
- Does Dickens use a more complex vocabulary than Rowling?
- Can a decline in lexical complexity predict Alzheimer's disease?
- How frequent is a hapax legomenon from the Brown corpus?
- What is appropriate smoothing for my n-gram model?
- Who wrote the Bixby letter, Lincoln or Hay?
- How many different species of ... are there? (Brainerd 1982)

4 1 1 4 1 1 1

< □ > < @ >

Some research questions

coverage estimates

productivity

lexical complexity & stylometry

prior & posterior distribution

unexpected applications

э

Zipf's law (Zipf 1949)

A) Frequency distributions in natural language are highly skewed

B) Curious relationship between rank & frequency

word	r	f	$r \cdot f$	_
the	1.	142,776	142,776	-
and	2.	100,637	201,274	(Dickens)
be	3.	94,181	282,543	
of	4.	74,054	296,216	

C) Various explanations of Zipf's law

- principle of least effort (Zipf 1949)
- optimal coding system, MDL (Mandelbrot 1953, 1962)
- random sequences (Miller 1957; Li 1992; Cao et al. 2017)
- ► Markov processes → n-gram models (Rouault 1978)

D) Language evolution: birth-death-process (Simon 1955)

not the main topic today!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Outline

Part 1

Motivation

Descriptive statistics & notation

Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2

Applications & examples (zipfR) Limitations Non-randomness Conclusion & outlook

э

(B)

Image: Image:

Tokens & types

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

- N = 15: number of **tokens** = sample size
- V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)

E 6 4 E 6

< < >>

Tokens & types

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

- N = 15: number of **tokens** = sample size
- V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)

type-frequency list

W	f_w
recently	1
very	5
not	3
otherwise	1
much	2
merely	2
now	1

Image: A matrix

Zipf ranking

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

- \triangleright N = 15: number of **tokens** = sample size
- \blacktriangleright V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)

Zipi ranking					
W	r	f _r			
very	1	5			
not	2	3			
merely	3	2			
much	4	2			
now	5	1			
otherwise	6	1			
recently	7	1			

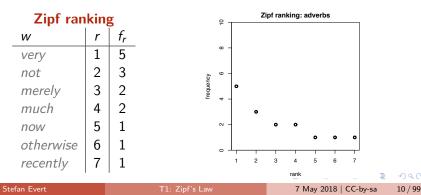
7:nf woulding

イロト イポト イヨト イヨト 二日

Zipf ranking

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

- \triangleright N = 15: number of **tokens** = sample size
- V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)



A realistic Zipf ranking: the Brown corpus

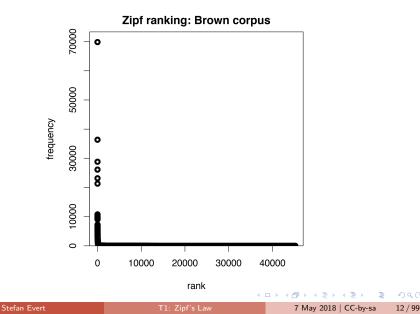
top frequencies		bottom frequencies			
r	f	word	rank range	f	randomly selected examples
1	69836	the	7731 - 8271	10	schedules, polynomials, bleak
2	36365	of	8272 - 8922	9	tolerance, shaved, hymn
3	28826	and	8923 - 9703	8	decreased, abolish, irresistible
4	26126	to	9704 - 10783	7	immunity, cruising, titan
5	23157	а	10784 - 11985	6	geographic, lauro, portrayed
6	21314	in	11986 - 13690	5	grigori, slashing, developer
7	10777	that	13691 - 15991	4	sheath, gaulle, ellipsoids
8	10182	is	15992 - 19627	3	mc, initials, abstracted
9	9968	was	19628 - 26085	2	thar, slackening, deluxe
10	9801	he	26086 - 45215	1	beck, encompasses, second-place

Part 1

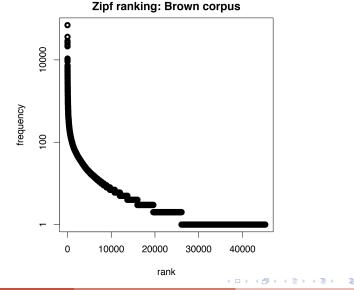
3

イロト イポト イヨト イヨト

A realistic Zipf ranking: the Brown corpus



A realistic Zipf ranking: the Brown corpus



Stefan Evert

Frequency spectrum

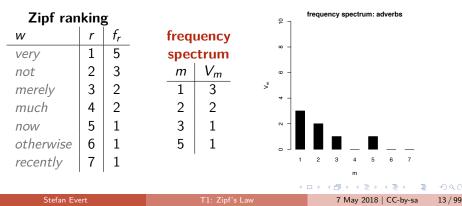
- pool types with f = 1 (hapax legomena), types with f = 2 (dis legomena), ..., f = m, ...
- ▶ $V_1 = 3$: number of hapax legomena (*now*, otherwise, recently)
- $V_2 = 2$: number of dis legomena (*merely, much*)
- general definition: $V_m = |\{w \mid f_w = m\}|$

Zipf ran				
W	r	f _r	frequency	
very	1	5	spectrum	
not	2	3	т	Vm
merely	3	2	1	3
much	4	2	2	2
now	5	1	3	1
otherwise	6	1	5	1
recently	7	1		1

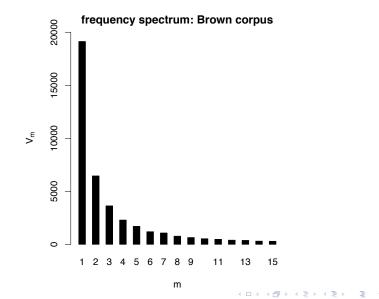
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Frequency spectrum

- pool types with f = 1 (hapax legomena), types with f = 2 (dis legomena), ..., f = m, ...
- ▶ $V_1 = 3$: number of hapax legomena (*now*, otherwise, recently)
- $V_2 = 2$: number of dis legomena (*merely, much*)
- general definition: $V_m = |\{w \mid f_w = m\}|$



A realistic frequency spectrum: the Brown corpus



our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

▶
$$N = 1$$
, $V(N) = 1$, $V_1(N) = 1$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

▶
$$N = 1$$
, $V(N) = 1$, $V_1(N) = 1$
▶ $N = 3$, $V(N) = 3$, $V_1(N) = 3$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

イロト イポト イヨト イヨト 二日

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

3

A B M A B M

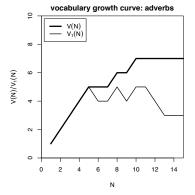
Image: A matrix

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

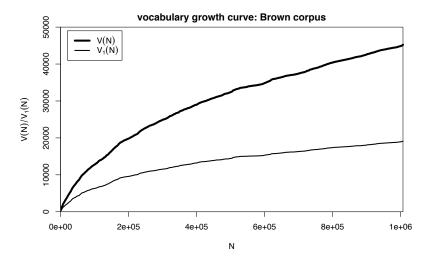
$$N = 1, V(N) = 1, V_1(N) = 1 N = 3, V(N) = 3, V_1(N) = 3 N = 7, V(N) = 5, V_1(N) = 4 N = 12, V(N) = 7, V_1(N) = 4 N = 15, V(N) = 7, V_1(N) = 3$$

イロト 不得下 イヨト イヨト 二日

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very



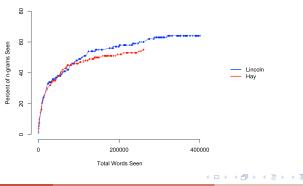
A realistic vocabulary growth curve: the Brown corpus



16/99

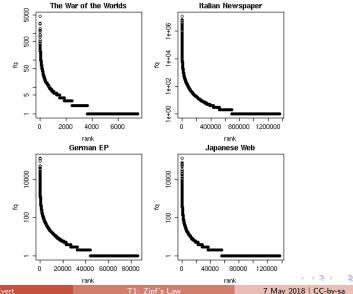
Vocabulary growth in authorship attribution

- Authorship attribution by n-gram tracing applied to the case of the Bixby letter (Grieve *et al.* submitted)
- Word or character n-grams in disputed text are compared against large "training" corpora from candidate authors



Gettysburg Address: Word 2-Grams

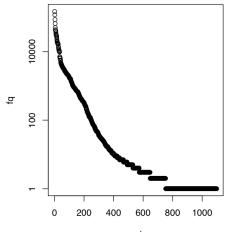
across languages and different linguistic units



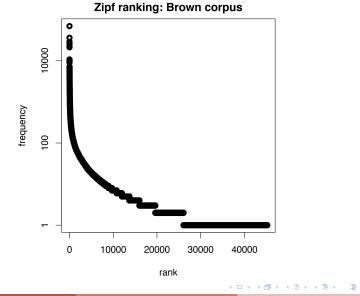
Stefan Evert

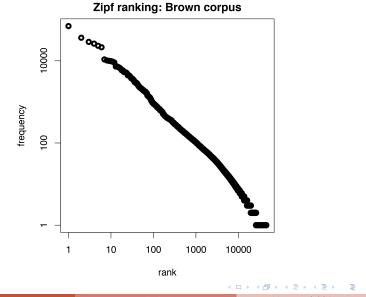
18/99

The Italian prefix ri- in the la Repubblica corpus



rank





Stefan Evert

T1: Zipf's Law

- Straight line in double-logarithmic space corresponds to power law for original variables
- This leads to Zipf's (1949; 1965) famous law:

$$f_r = \frac{C}{r^a}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Straight line in double-logarithmic space corresponds to power law for original variables
- This leads to Zipf's (1949; 1965) famous law:

$$f_r = \frac{C}{r^a}$$

If we take logarithm on both sides, we obtain:

$$\log f_r = \log C - a \cdot \log r$$

- Straight line in double-logarithmic space corresponds to power law for original variables
- This leads to Zipf's (1949; 1965) famous law:

$$f_r = \frac{C}{r^a}$$

If we take logarithm on both sides, we obtain:

$$\underbrace{\log f_r}_{y} = \log C - a \cdot \underbrace{\log r}_{x}$$

- Straight line in double-logarithmic space corresponds to power law for original variables
- This leads to Zipf's (1949; 1965) famous law:

$$f_r = \frac{C}{r^a}$$

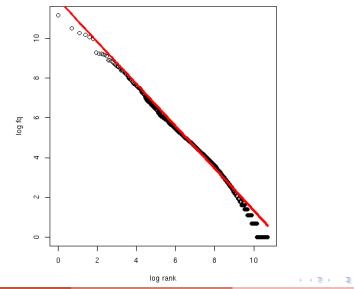
If we take logarithm on both sides, we obtain:

$$\underbrace{\log f_r}_{y} = \log C - a \cdot \underbrace{\log r}_{x}$$

Intuitive interpretation of a and C:

- a is slope determining how fast log frequency decreases
- ▶ log *C* is **intercept**, i.e. log frequency of most frequent word $(r = 1 \rightarrow \log r = 0)$

Least-squares fit = linear regression in log-space (Brown corpus)



Stefan Evert

T1: Zipf's Law

Zipf-Mandelbrot law

Mandelbrot (1953, 1962)

Mandelbrot's extra parameter:

$$f_r = \frac{C}{(r+b)^a}$$

▶ Zipf's law is special case with b = 0

Ct-	C	Ever	
Ste	an	Ever	L

Image: Image:

Zipf-Mandelbrot law

Mandelbrot (1953, 1962)

Mandelbrot's extra parameter:

$$f_r = \frac{C}{(r+b)^a}$$

- Zipf's law is special case with b = 0
- ► Assuming a = 1, C = 60,000, b = 1:
 - For word with rank 1, Zipf's law predicts frequency of 60,000; Mandelbrot's variation predicts frequency of 30,000
 - For word with rank 1,000, Zipf's law predicts frequency of 60; Mandelbrot's variation predicts frequency of 59.94

Zipf-Mandelbrot law

Mandelbrot (1953, 1962)

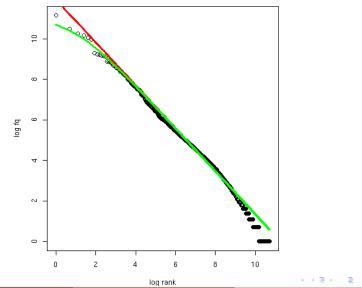
Mandelbrot's extra parameter:

$$f_r = \frac{C}{(r+b)^a}$$

- Zipf's law is special case with b = 0
- ► Assuming *a* = 1, *C* = 60,000, *b* = 1:
 - For word with rank 1, Zipf's law predicts frequency of 60,000; Mandelbrot's variation predicts frequency of 30,000
 - For word with rank 1,000, Zipf's law predicts frequency of 60; Mandelbrot's variation predicts frequency of 59.94
- Zipf-Mandelbrot law forms basis of statistical LNRE models
 - ZM law derived mathematically as limiting distribution of vocabulary generated by a character-level Markov process

Zipf-Mandelbrot law

Non-linear least-squares fit (Brown corpus)



Stefan Evert

T1: Zipf's Law

7 May 2018 | CC-by-sa 24 / 99

Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition

Part 2

Applications & examples (zipfR) Limitations Non-randomness Conclusion & outlook

э

A B b A B b

< 47 ▶

zipfR Evert and Baroni (2007)

- http://zipfR.R-Forge.R-Project.org/
- Conveniently available from CRAN repository
- Package vignette = gentle tutorial introduction

First steps with zipfR

- Set up a folder for this course, and make sure it is your working directory in R (preferably as an RStudio project)
- Install the most recent version of the zipfR package
- Package, handouts, code samples & data sets available from http://zipfr.r-forge.r-project.org/lrec2018.html

- > library(zipfR)
- > ?zipfR # documentation entry point
- > vignette("zipfr-tutorial") # read the zipfR tutorial

A B M A B M

Loading type-token data

- Most convenient input: sequence of tokens as text file in vertical format ("one token per line")
 - mapped to appropriate types: normalized word forms, word pairs, lemmatized, semantic class, n-gram of POS tags, ...
 - Ianguage data should always be in UTF-8 encoding!
 - Iarge files can be compressed (.gz, .bz2, .xz)

Loading type-token data

- Most convenient input: sequence of tokens as text file in vertical format ("one token per line")
 - mapped to appropriate types: normalized word forms, word pairs, lemmatized, semantic class, n-gram of POS tags, ...
 - Ianguage data should always be in UTF-8 encoding!
 - Iarge files can be compressed (.gz, .bz2, .xz)
- Sample data: brown_adverbs.txt on tutorial homepage
 - lowercased adverb tokens from Brown corpus (original order)
 - download and save to your working directory

Loading type-token data

- Most convenient input: sequence of tokens as text file in vertical format ("one token per line")
 - mapped to appropriate types: normalized word forms, word pairs, lemmatized, semantic class, n-gram of POS tags, ...
 - Ianguage data should always be in UTF-8 encoding!
 - large files can be compressed (.gz, .bz2, .xz)
- Sample data: brown_adverbs.txt on tutorial homepage
 - lowercased adverb tokens from Brown corpus (original order)
 download and save to your working directory
- > adv <- readLines("brown_adverbs.txt", encoding="UTF-8")</pre>
- > head(adv, 30) # mathematically, a ''vector'' of tokens
- > length(adv) # sample size = 52,037 tokens

Descriptive statistics: type-frequency list

>	adv	<i>r</i> .tfl	<-	<pre>vec2tfl(adv)</pre>
>	adv	<i>r</i> .tfl		
	k	f	type	Э
1	1	4859	not	5
2	2	2084	n't	5
3	3	1464	s)
4	4	1381	only	7
5	5	1374	the	ı
6	6	1309	nor	7
7	7	1134	evei	1
8	8	1089	a	3
	:	:		
	1	v v		•
5	-	7 1907		

- > N(adv.tfl) # sample size
- > V(adv.tfl) # type count

3

A B A A B A

< □ > < 同 >

Descriptive statistics: frequency spectrum

```
> adv.spc <- tfl2spc(adv.tfl) # or directly with vec2spc</pre>
> adv.spc
   m Vm
    1 762
1
2
  2 260
3
  3 144
4
   4 99
5
  5 69
6
  6 50
7
  7 40
8
   8 34
      - :
    Ν
         V
 52037 1907
> N(adv.spc) # sample size
```

> V(adv.spc) # type count

3

Descriptive statistics: vocabulary growth

- ▶ VGC lists vocabulary size V(N) at different sample sizes N
- Optionally also spectrum elements $V_m(N)$ up to m.max
- > adv.vgc <- vec2vgc(adv, m.max=2)</pre>

Visualize descriptive statistics with plot method

- > plot(adv.tfl, log="xy")

logarithmic scale recommended

- > plot(adv.spc) # barplot of frequency spectrum
- > plot(adv.vgc, add.m = 1:2) # vocabulary growth curve

Further example data sets

?Brown words from Brown corpus ?BrownSubsets various subsets ?Dickens words from novels by Charles Dickens ?ItaPref Italian word-formation prefixes ?TigerNP NP and PP patterns from German Tiger treebank ?Baayen2001 frequency spectra from Baayen (2001) ?EvertLuedeling2001 German word-formation affixes (manually corrected data from Evert and Lüdeling 2001)

Practice:

- Explore these data sets with descriptive statistics
- Try different plot options (from help pages ?plot.tfl, ?plot.spc, ?plot.vgc)

Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2 Applications & examples (zipff Limitations Non-randomness Conclusion & outlook

э

A B A A B A

< 1 k

Motivation

Interested in productivity of affix, vocabulary of author, ...; not in a particular text or sample

statistical inference from sample to population

- Discrete frequency counts are difficult to capture with generalizations such as Zipf's law
 - Zipf's law predicts many impossible types with $1 < f_r < 2$
 - population does not suffer from such quantization effects

LNRE models

- This tutorial introduces the state-of-the-art LNRE approach proposed by Baayen (2001)
 - LNRE = Large Number of Rare Events
- LNRE uses various approximations and simplifications to obtain a tractable and elegant model
- Of course, we could also estimate the precise discrete distributions using MCMC simulations, but ...
 - 1. LNRE model usually minor component of complex procedure
 - 2. often applied to very large samples (N > 1 M tokens)

The LNRE population

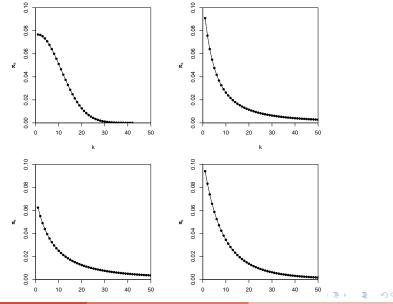
- ▶ Population: set of S types w_i with occurrence probabilities π_i
- S = **population diversity** can be finite or infinite ($S = \infty$)
- Not interested in specific types → arrange by decreasing probability: π₁ ≥ π₂ ≥ π₃ ≥ · · ·

impossible to determine probabilities of all individual types

- Normalization: $\pi_1 + \pi_2 + \ldots + \pi_S = 1$
- Need parametric statistical model to describe full population (esp. for S = ∞), i.e. a function i → π_i
 - type probabilities π_i cannot be estimated reliably from a sample, but parameters of this function can
 - NB: population index $i \neq \text{Zipf rank } r$

イロト 不得下 イヨト イヨト 二日

Examples of population models



The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well
- Re-phrase the law for type probabilities:

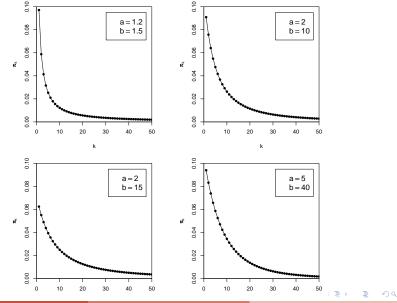
$$\pi_i := \frac{C}{(i+b)^a}$$

- Two free parameters: a > 1 and $b \ge 0$
- *C* is not a parameter but a normalization constant, needed to ensure that $\sum_i \pi_i = 1$
- This is the Zipf-Mandelbrot population model

< 日 > < 同 > < 三 > < 三 >

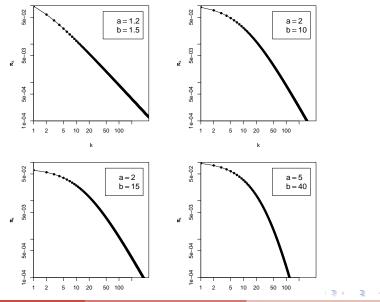
Part 1

The parameters of the Zipf-Mandelbrot model



Part 1 LNRE models: intuition

The parameters of the Zipf-Mandelbrot model



Stefan Evert

T1: Zipf's Law

The finite Zipf-Mandelbrot model Evert (2004)

- Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on *i*, and the type probabilities π_i can become arbitrarily small
- $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-15}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)

The finite Zipf-Mandelbrot model Evert (2004)

- Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on *i*, and the type probabilities π_i can become arbitrarily small
- ▶ $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-15}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)
- ► The **finite Zipf-Mandelbrot** model stops after first *S* types
- Population diversity S becomes a parameter of the model

 → the finite Zipf-Mandelbrot model has 3 parameters

The finite Zipf-Mandelbrot model Evert (2004)

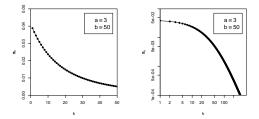
- Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on *i*, and the type probabilities π_i can become arbitrarily small
- ▶ $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-15}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)
- ► The **finite Zipf-Mandelbrot** model stops after first *S* types
- Population diversity S becomes a parameter of the model

 → the finite Zipf-Mandelbrot model has 3 parameters

Abbreviations:

- **ZM** for Zipf-Mandelbrot model
- fZM for finite Zipf-Mandelbrot model

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:



Use computer simulation to generate random samples:

- Draw N tokens from the population such that in each step, type w_i has probability π_i to be picked
- This allows us to make predictions for samples (= corpora) of arbitrary size N

Stefan Evert

#1: 1 42 34 23 108 18 48 18 1 ...

Ste	fan	Evert

<ロ> <四> <四> <四> <四> <四</p>

#1: 1 42 34 23 108 18 48 18 1 ... time order room school town course area course time ...

	Evert

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#1:	1	42	34	23	108	18	48	18	1	
	time	order	room	school	town	course	area	course	time	
#2:	286	28	23	36	3	4	7	4	8	

3

イロト イボト イヨト イヨト

#1:	1	42	34	23	108	18	48	18	1	
	time	order	room	school	town	course	area	course	time	
#2:	286	28	23	36	3	4	7	4	8	
#3:	2	11	105	21	11	17	17	1	16	

3

イロト イボト イヨト イヨト

#1:	1	42	34	23	108	18	48	18	1		
	time	order	room	school	town	course	area	course	time		
#2:	286	28	23	36	3	4	7	4	8		
#3:	2	11	105	21	11	17	17	1	16		
#4:	44	3	110	34	223	2	25	20	28		
#5:	24	81	54	11	8	61	1	31	35		
#6 :	3		9	165	5	42	16	20	7		
#7:			11			54					
#8:	11	7	147	5	24	19	15	85	37		
÷	:	:	÷	÷	:	÷	:	< □ ► <	: ₽ ► <		
efan Evert				T	L: Zipf's	Law			7 May	2018 CC-by-	sa

43 / 99

Samples: type frequency list & spectrum

rank <i>r</i>	f _r	type <i>i</i>	т	V _m
1	37	6	1	83
2	36	1	2	22
3	33	3	3	20
4	31	7	4	12
5	31	10	5	10
6	30	5	6	5
7	28	12	7	5
8	27	2	8	
9	24	4	9	3
10	24	16	10	3
11	23	8	:	:
12	22	14	•	· ·
:		÷	san	nple #1

э

イロト イボト イヨト イヨト

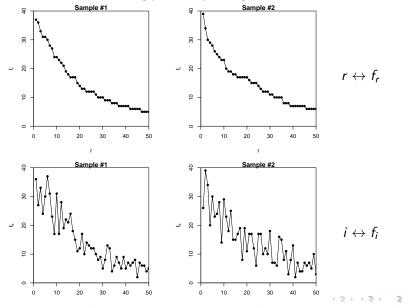
Samples: type frequency list & spectrum

rank <i>r</i>	f _r	type <i>i</i>	т	V _m
1	39	2	1	76
2	34	3	2	27
3	30	5	3	17
4	29	10	4	10
5	28	8	5	6
6	26	1	6	5
7	25	13	7	7
8	24	7	8	3
9	23	6	10	4
10	23	11	11	2
11	20	4	:	:
12	19	17		•
÷		÷	san	nple #2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

æ

Random variation in type-frequency lists

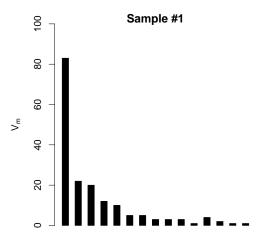


Stefan Evert

T1: Zipf's Law

. . .

Random variation: frequency spectrum

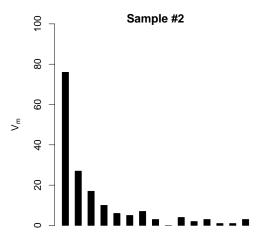


m

Stefan Evert

э

Random variation: frequency spectrum

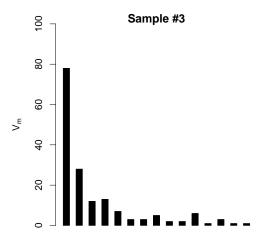


m

Stefan Evert

э

Random variation: frequency spectrum

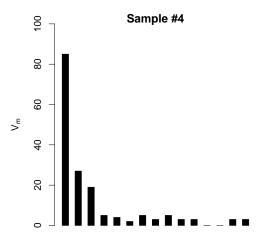


m

Stefan Evert

э

Random variation: frequency spectrum

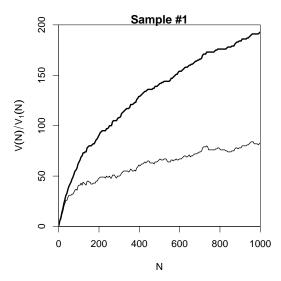


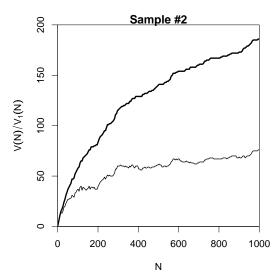
m

Stefan Evert

< 行

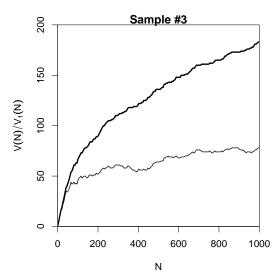
э





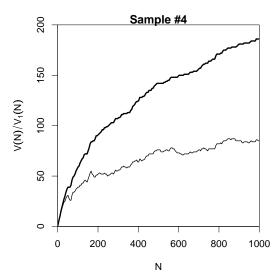
Stefan Evert

7 May 2018 | CC-by-sa 48 / 99



Stefan Evert

7 May 2018 | CC-by-sa 48 / 99



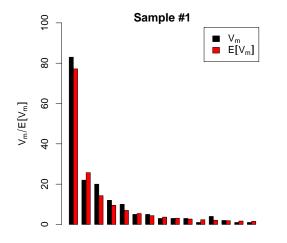
Stefan Evert

7 May 2018 | CC-by-sa 48 / 99

Expected values

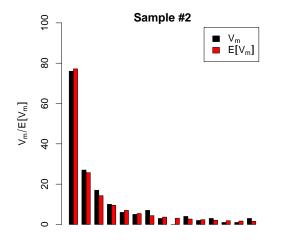
- There is no reason why we should choose a particular sample to compare to the real data or make a prediction – each one is equally likely or unlikely
- Take the average over a large number of samples, called expected value or expectation in statistics
- Notation: E[V(N)] and $E[V_m(N)]$
 - indicates that we are referring to expected values for a sample of size N
 - rather than to the specific values V and V_m observed in a particular sample or a real-world data set
- Expected values can be calculated efficiently without generating thousands of random samples

< □ > < □ > < □ > < □ > < □ > < □ >



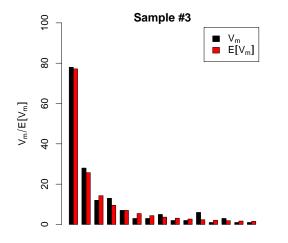
m

Stefan Evert



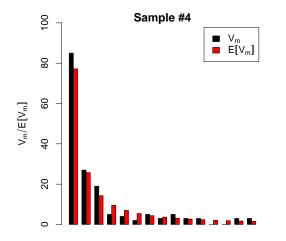
m

Stefan Evert



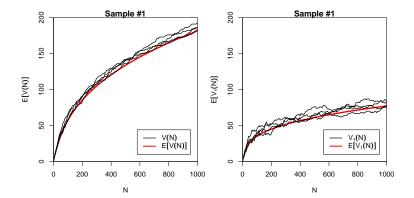
m

Stefan Evert

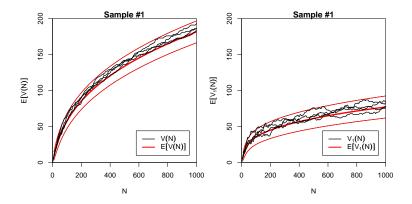


m

The expected vocabulary growth curve

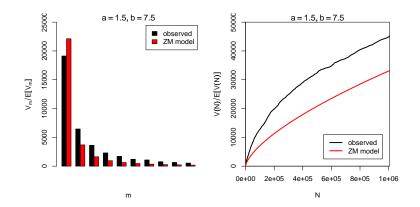


Prediction intervals for the expected VGC



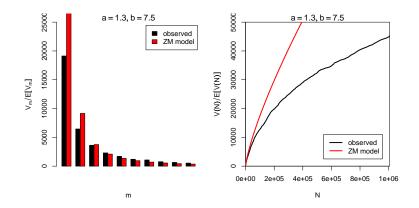
"Confidence intervals" indicate predicted sampling distribution:

for 95% of samples generated by the LNRE model, VGC will fall within the range delimited by the thin red lines



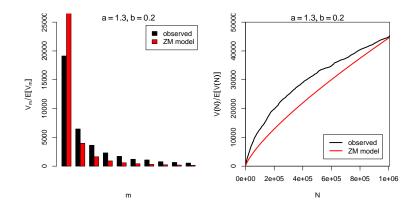
Part 1

э.



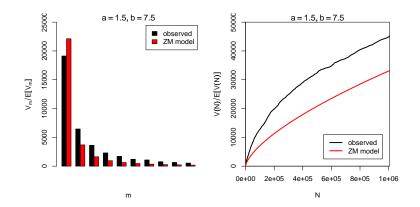
Part 1

∃ →



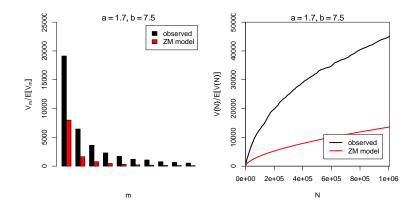
Part 1

53 / 99

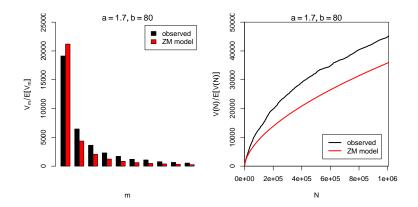


Part 1

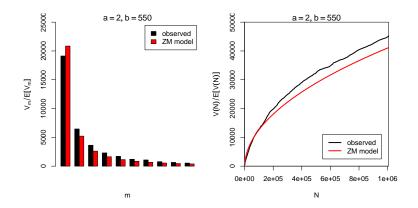
э.



Part 1

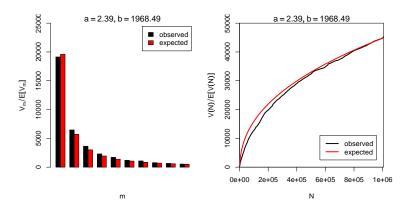


Part 1



Part 1

Automatic parameter estimation



• By trial & error we found a = 2.0 and b = 550

• Automatic estimation procedure: a = 2.39 and b = 1968

Ste		

Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2 Applications & examples (zipfR) Limitations Non-randomness Conclusion & outlook

3

A B b A B b

< 4 ► >

The sampling model

- Draw random sample of N tokens from LNRE population
- Sufficient statistic: set of type frequencies {f_i}
 - because tokens of random sample have no ordering
- ▶ Joint **multinomial** distribution of {*f_i*}:

$$\Pr(\lbrace f_i = k_i \rbrace \mid N) = \frac{N!}{k_1! \cdots k_S!} \pi_1^{k_1} \cdots \pi_S^{k_S}$$

A B A A B A

The sampling model

- Draw random sample of N tokens from LNRE population
- Sufficient statistic: set of type frequencies {f_i}
 - because tokens of random sample have no ordering
- Joint **multinomial** distribution of $\{f_i\}$:

$$\Pr(\lbrace f_i = k_i \rbrace \mid N) = \frac{N!}{k_1! \cdots k_S!} \pi_1^{k_1} \cdots \pi_S^{k_S}$$

- Approximation: do not condition on fixed sample size N
 N is now the average (expected) sample size
- Random variables f_i have independent Poisson distributions:

$$\Pr(f_i = k_i) = e^{-N\pi_i} \frac{(N\pi_i)^{k_i}}{k_i!}$$

Key problem: we cannot determine f_i in observed sample

- becasue we don't know which type w_i is
- recall that population ranking $f_i \neq \text{Zipf}$ ranking f_r
- Use spectrum {V_m} and sample size V as statistics
 - contains all information we have about observed sample

Key problem: we cannot determine f_i in observed sample

- becasue we don't know which type w_i is
- recall that population ranking $f_i \neq \text{Zipf}$ ranking f_r
- Use spectrum {V_m} and sample size V as statistics
 - contains all information we have about observed sample
- Can be expressed in terms of indicator variables

$$I_{[f_i=m]} = egin{cases} 1 & f_i = m \ 0 & ext{otherwise} \end{cases}$$

Key problem: we cannot determine f_i in observed sample

- becasue we don't know which type w_i is
- recall that population ranking $f_i \neq \text{Zipf}$ ranking f_r
- Use spectrum $\{V_m\}$ and sample size V as statistics
 - contains all information we have about observed sample
- Can be expressed in terms of indicator variables

$$m{I}_{[f_i=m]} = egin{cases} 1 & f_i = m \ 0 & ext{otherwise} \end{cases}$$
 $m{V}_m = \sum_{i=1}^{S} m{I}_{[f_i=m]}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Key problem: we cannot determine f_i in observed sample

- becasue we don't know which type w_i is
- recall that population ranking $f_i \neq \text{Zipf}$ ranking f_r
- Use spectrum {V_m} and sample size V as statistics
 - contains all information we have about observed sample
- Can be expressed in terms of indicator variables

$$[f_{i}=m] = \begin{cases} 1 & f_{i} = m \\ 0 & \text{otherwise} \end{cases}$$

 $V_{m} = \sum_{i=1}^{S} I_{[f_{i}=m]}$
 $V = \sum_{i=1}^{S} I_{[f_{i}>0]} = \sum_{i=1}^{S} (1 - I_{[f_{i}=0]})$

It is easy to compute expected values for the frequency spectrum (and variances because the f_i are independent)

$$\operatorname{E}[I_{[f_i=m]}] = \operatorname{Pr}(f_i = m) = e^{-N\pi_i} \frac{(N\pi_i)^m}{m!}$$

It is easy to compute expected values for the frequency spectrum (and variances because the f_i are independent)

$$E[I_{[f_i=m]}] = \Pr(f_i = m) = e^{-N\pi_i} \frac{(N\pi_i)^m}{m!}$$
$$E[V_m] = \sum_{i=1}^{S} E[I_{[f_i=m]}] = \sum_{i=1}^{S} e^{-N\pi_i} \frac{(N\pi_i)^m}{m!}$$

イロト イポト イヨト イヨト

It is easy to compute expected values for the frequency spectrum (and variances because the f_i are independent)

$$E[I_{[f_i=m]}] = \Pr(f_i = m) = e^{-N\pi_i} \frac{(N\pi_i)^m}{m!}$$
$$E[V_m] = \sum_{i=1}^{S} E[I_{[f_i=m]}] = \sum_{i=1}^{S} e^{-N\pi_i} \frac{(N\pi_i)^m}{m!}$$
$$E[V] = \sum_{i=1}^{S} E[1 - I_{[f_i=0]}] = \sum_{i=1}^{S} (1 - e^{-N\pi_i})$$

It is easy to compute expected values for the frequency spectrum (and variances because the f_i are independent)

$$E[I_{[f_i=m]}] = \Pr(f_i = m) = e^{-N\pi_i} \frac{(N\pi_i)^m}{m!}$$
$$E[V_m] = \sum_{i=1}^{S} E[I_{[f_i=m]}] = \sum_{i=1}^{S} e^{-N\pi_i} \frac{(N\pi_i)^m}{m!}$$
$$E[V] = \sum_{i=1}^{S} E[1 - I_{[f_i=0]}] = \sum_{i=1}^{S} (1 - e^{-N\pi_i})$$

NB: V_m and V are not independent because they are derived from the same random variables f_i

58 / 99

Sampling distribution of V_m and V

- Joint sampling distribution of $\{V_m\}$ and V is complicated
- Approximation: V and {V_m} asymptotically follow a multivariate normal distribution
 - motivated by the multivariate central limit theorem: sum of many independent variables l_[fi=m]
- ▶ Usually limited to first spectrum elements, e.g. V_1, \ldots, V_{15}
 - ▶ approximation of discrete V_m by continuous distribution suitable only if E[V_m] is sufficiently large

Sampling distribution of V_m and V

- ▶ Joint sampling distribution of $\{V_m\}$ and V is complicated
- **Approximation:** V and $\{V_m\}$ asymptotically follow a multivariate normal distribution
 - motivated by the multivariate central limit theorem: sum of many independent variables $I_{[f_i=m]}$
- Usually limited to first spectrum elements, e.g. V_1, \ldots, V_{15}
 - approximation of discrete V_m by continuous distribution suitable only if $E[V_m]$ is sufficiently large
- Parameters of multivariate normal:
 - $\boldsymbol{\mu} = (E[V], E[V_1], E[V_2], \ldots)$ and $\boldsymbol{\Sigma} = \text{covariance matrix}$

$$\Pr((V, V_1, \dots, V_k) = \mathbf{v}) \sim \frac{e^{-\frac{1}{2}(\mathbf{v} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{v} - \boldsymbol{\mu})}}{\sqrt{(2\pi)^{k+1} \det \boldsymbol{\Sigma}}}$$

59 / 99

Type density function

- Discrete sums of probabilities in E[V], E[V_m], Idots are inconvenient and computationally expensive
- Approximation: continuous type density function $g(\pi)$

$$|\{w_i \mid a \le \pi_i \le b\}| = \int_a^b g(\pi) \, d\pi$$
$$\sum \{\pi_i \mid a \le \pi_i \le b\} = \int_a^b \pi g(\pi) \, d\pi$$

A B A A B A

Image: A matrix

Type density function

- Discrete sums of probabilities in E[V], E[V_m], Idots are inconvenient and computationally expensive
- Approximation: continuous type density function $g(\pi)$

$$|\{w_i \mid a \le \pi_i \le b\}| = \int_a^b g(\pi) \, d\pi$$
$$\sum \{\pi_i \mid a \le \pi_i \le b\} = \int_a^b \pi g(\pi) \, d\pi$$

Normalization constraint:

$$\int_0^\infty \pi g(\pi) \, d\pi = 1$$

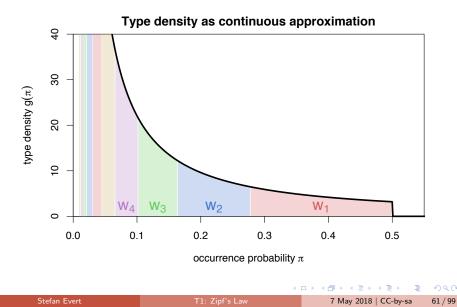
▶ Good approximation for low-probability types, but probability mass of w₁, w₂,... "smeared out" over range

.

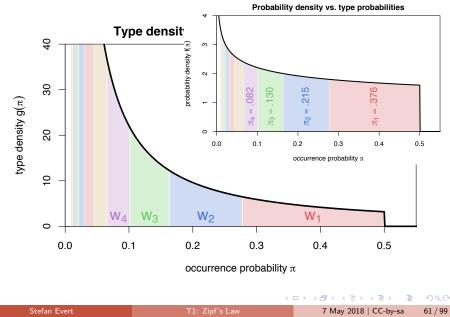
Stefan Evert

7 May 2018 | CC-by-sa 60 / 99

Type density function



Type density function



Discrete Zipf-Mandelbrot population

$$\pi_i := rac{C}{(i+b)^a}$$
 for $i = 1, \dots, S$

-5	n ei	fan	Εv	(en

크

A B A A B A

< □ > < 同 >

Discrete Zipf-Mandelbrot population

$$\pi_i := rac{\mathcal{C}}{(i+b)^a} \quad ext{for } i=1,\ldots,S$$

Corresponding type density function (Evert 2004)

$$g(\pi) = egin{cases} C \cdot \pi^{-lpha - 1} & A \leq \pi \leq B \ 0 & ext{otherwise} \end{cases}$$

Image: A matrix

э

Discrete Zipf-Mandelbrot population

$$\pi_i := rac{\mathcal{C}}{(i+b)^{s}} \quad ext{for } i=1,\ldots,S$$

Corresponding type density function (Evert 2004)

$$g(\pi) = egin{cases} C \cdot \pi^{-lpha - 1} & A \leq \pi \leq B \ 0 & ext{otherwise} \end{cases}$$

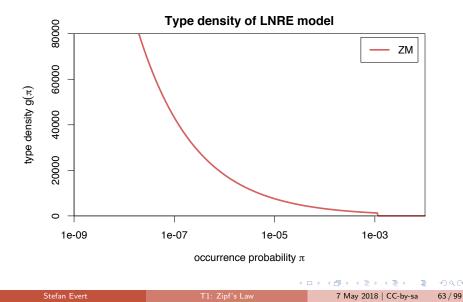
with parameters

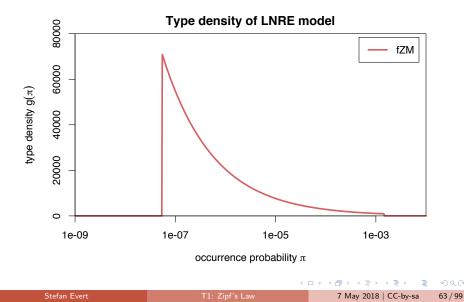
•
$$\alpha = 1/a \ (0 < \alpha < 1)$$

$$\bullet \ \mathbf{B} = \mathbf{b} \cdot \alpha / (1 - \alpha)$$

- $0 \le A < B$ determines S (ZM with $S = \infty$ for A = 0)
- \square C is a normalization factor, not a parameter

4 1 1 4 1 1 1





Expectations as integrals

Expected values can now be expressed as integrals over $g(\pi)$

$$E[V_m] = \int_0^\infty \frac{(N\pi)^m}{m!} e^{-N\pi} g(\pi) \, d\pi$$
$$E[V] = \int_0^\infty (1 - e^{-N\pi}) g(\pi) \, d\pi$$

	Evert

<ロ> <四> <四> <四> <四> <四</p>

Expectations as integrals

Expected values can now be expressed as integrals over $g(\pi)$

$$\mathbb{E}[V_m] = \int_0^\infty \frac{(N\pi)^m}{m!} e^{-N\pi} g(\pi) \, d\pi$$
$$\mathbb{E}[V] = \int_0^\infty (1 - e^{-N\pi}) g(\pi) \, d\pi$$

Reduce to simple closed form for ZM (approximation)

$$E[V_m] = \frac{C}{m!} \cdot N^{\alpha} \cdot \Gamma(m - \alpha)$$
$$E[V] = C \cdot N^{\alpha} \cdot \frac{\Gamma(1 - \alpha)}{\alpha}$$

FZM and exact solution for ZM with incompl. Gamma function

Stefa	

- ► For ZM, $\alpha = \frac{E[V_1]}{E[V]} \approx \frac{V_1}{V}$ can be estimated directly, but prone to overfitting
- General parameter fitting by MLE: maximize likelihood of observed spectrum v

$$\max_{\alpha,A,B} \Pr((V,V1,\ldots,V_k) = \mathbf{v} \,|\, \alpha, A, B)$$

A B b A B b

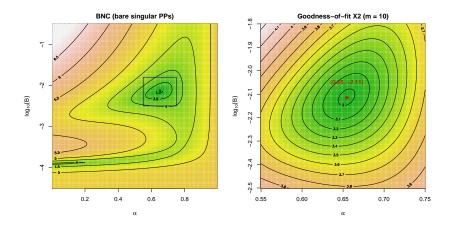
- ► For ZM, $\alpha = \frac{E[V_1]}{E[V]} \approx \frac{V_1}{V}$ can be estimated directly, but prone to overfitting
- General parameter fitting by MLE: maximize likelihood of observed spectrum v

$$\max_{\alpha,A,B} \Pr\left((V,V1,\ldots,V_k) = \mathbf{v} \,|\, \alpha,A,B\right)$$

$$\min_{\alpha,A,B} (\mathbf{v} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{v} - \boldsymbol{\mu})$$

 Minimization by gradient descent (BFGS, CG) or simplex search (Nelder-Mead)

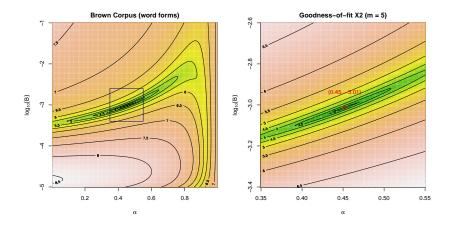
- 51	te	rar	۱E	ve	rt



7 May 2018 | CC-by-sa 66 / 99

э

A D N A B N A B N A B N



7 May 2018 | CC-by-sa 66 / 99

3

A D N A B N A B N A B N

Goodness-of-fit

(Baayen 2001, Sec. 3.3)

- How well does the fitted model explain the observed data?
- For multivariate normal distribution:

$$X^2 = (\mathbf{V} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{V} - \boldsymbol{\mu}) \sim \chi^2_{k+1}$$

where $\mathbf{V} = (V, V_1, \dots, V_k)$

Ste	fan	Eve	

3

イロト イボト イヨト イヨト

Goodness-of-fit

(Baayen 2001, Sec. 3.3)

- How well does the fitted model explain the observed data?
- For multivariate normal distribution:

$$X^2 = (\mathbf{V} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{V} - \boldsymbol{\mu}) \sim \chi^2_{k+1}$$

where $\mathbf{V} = (V, V_1, \dots, V_k)$

- Multivariate chi-squared test of goodness-of-fit
 - replace **V** by observed **v** \rightarrow test statistic x^2
 - must reduce df = k + 1 by number of estimated parameters
- ▶ NB: significant rejection of the LNRE model for p < .05

Coffee break!

э

< □ > < □ > < □ > < □ > < □ >

Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2

Applications & examples (zipfR)

Limitations Non-randomness Conclusion & outlook

э

(B)

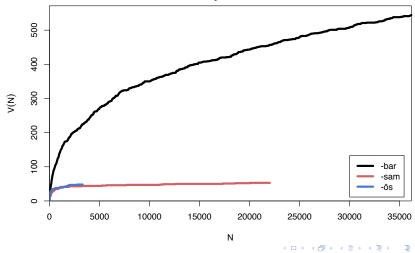
7 May 2018 | CC-by-sa

70 / 99

Measuring morphological productivity

example from Evert and Lüdeling (2001)

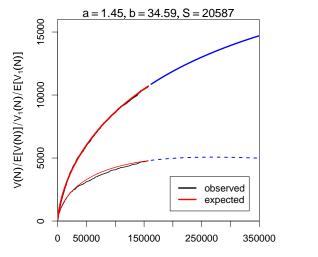
Stefan Evert



Vocabulary Growth Curves

Measuring morphological productivity

example from Evert and Lüdeling (2001)

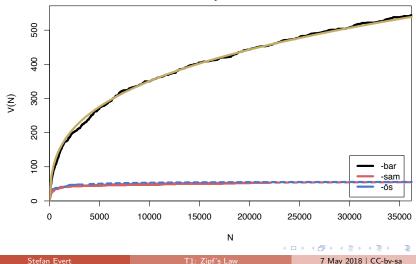


Stefan Ever

70 / 99

Measuring morphological productivity

example from Evert and Lüdeling (2001)



Vocabulary Growth Curves

Quantitative measures of productivity

(Tweedie and Baayen 1998; Baayen 2001)

 Baayen's (1991) productivity index P (slope of vocabulary growth curve)

$$\mathcal{P} = \frac{V_1}{N}$$

TTR = type-token ratio

$$TTR = \frac{V}{N}$$

Zipf-Mandelbrot slope

а

Herdan's law (1964)

$$C = \frac{\log V}{\log N}$$

< □ > < 凸

Quantitative measures of productivity

(Tweedie and Baayen 1998; Baayen 2001)

 Baayen's (1991) productivity index P (slope of vocabulary growth curve)

$$\mathcal{P} = \frac{V_1}{N}$$

TTR = type-token ratio

$$TTR = \frac{V}{N}$$

Zipf-Mandelbrot slope

а

Herdan's law (1964)

$$C = \frac{\log V}{\log N}$$

Yule (1944) / Simpson (1949)

$$K = 10\,000 \cdot \frac{\sum_m m^2 V_m - N}{N^2}$$

Guiraud (1954)

$$R = \frac{V}{\sqrt{N}}$$

Sichel (1975)

$$S = \frac{V_2}{V}$$

Honoré (1979)

$$H = \frac{\log N}{1 - \frac{V_1}{V}}$$

Productivity measures for bare singulars in the BNC

	spoken	written	
V	2,039	2,039 12,876	
Ν	6,766	85,750	
K	86.84	28.57	
R	24.79	43.97	
<i>S</i> 0.13		0.15	
C 0.86		0.83	
${\cal P}$	0.21	0.08	
TTR	0.301	0.150	
а	1.18	1.27	
рор. <i>S</i>	15,958	36,874	

イロト イポト イヨト イヨト

э

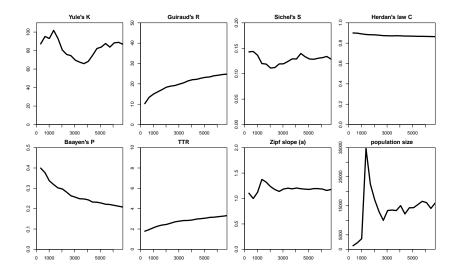
Productivity measures for bare singulars in the BNC

	spoken	written	vocabulary growth curves (BNC)
V	2,039	12,876	12000
Ň	6,766	85,750	
K	86.84	28.57	900 -
R	24.79	43.97	ŝ
S	0.13	0.15	> 000 -
С	0.86	0.83	400
${\mathcal P}$	0.21	0.08	
TTR	0.301	0.150	8 - written
а	1.18	1.27	s spoken
рор. <i>S</i>	15,958	36,874	o 20000 40000 60000 80000 N

イロト イポト イヨト イヨト

э

Are these "lexical constants" really constant?



Stefan Evert

7 May 2018 | CC-by-sa

→ ∃ →

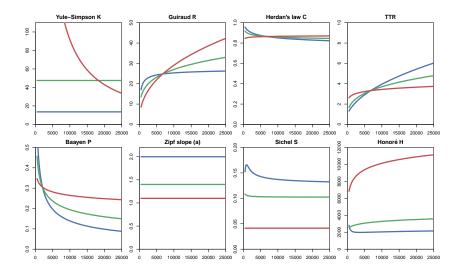
э

73 / 99

Simulation experiments based on LNRE models

- Systematic study of size dependence and other aspects of productivity measures based on samples from LNRE model
- ► LNRE model → well-defined population
- Random sampling helps to assess variability of measures
- Expected values E[P] etc. can often be computed directly (or approximated) → computationally efficient
- LNRE models as tools for understanding productivity measures

Simulation: sample size



Stefan Evert

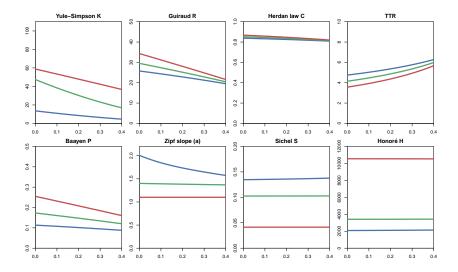
T1: Zipf's Law

7 May 2018 | CC-by-sa

75 / 99

<ロ> <四> <四> <四> <四> <四</p>

Simulation: frequent lexicalized types



Stefan Evert

7 May 2018 | CC-by-sa

3

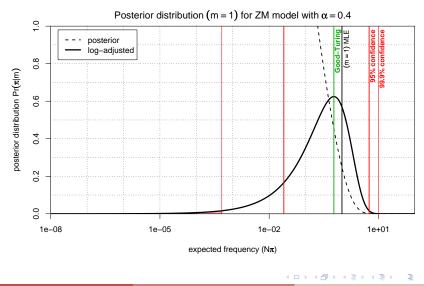
76 / 99

interactive demo

3

イロト イボト イヨト イヨト

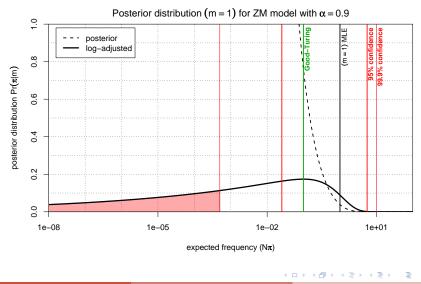
Posterior distribution



Stefan Evert

7 May 2018 | CC-by-sa 78 / 99

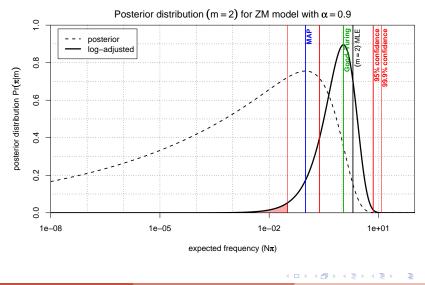
Posterior distribution



Stefan Evert

7 May 2018 | CC-by-sa 78 / 99

Posterior distribution



Stefan Evert

7 May 2018 | CC-by-sa 78 / 99

Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2

Applications & examples (zipfR) Limitations Non-randomness

Conclusion & outlook

э

A B A A B A

< 1 k

How reliable are the fitted models?

Three potential issues:

э

A D N A B N A B N A B N

How reliable are the fitted models?

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - nodel cannot be adequate, regardless of parameter settings

How reliable are the fitted models?

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 optimization algorithm trapped in local minimum
 - can result in highly inaccurate model

How reliable are the fitted models?

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 optimization algorithm trapped in local minimum
 - can result in highly inaccurate model
- 3. Uncertainty due to sampling variation
 - (i.e. training data differ from population distribution)
 - so model fitted to training data, may not reflect true population
 - ${}^{\scriptstyle \hbox{\scriptsize I\!S}}$ another training sample would have led to different parameters
 - sepecially critical for small samples (N < 10,000)

How reliable are the fitted models?

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model
- 3. Uncertainty due to sampling variation
 - (i.e. training data differ from population distribution)
 - so model fitted to training data, may not reflect true population
 - ${}^{\scriptstyle \hbox{\scriptsize I\!S}}$ another training sample would have led to different parameters
 - sepecially critical for small samples (N < 10,000)

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- Bootstrapping (Efron 1979)
 - resample from observed data with replacement
 - this approach is not suitable for type-token distributions (resamples underestimate vocabulary size V!)

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- Bootstrapping (Efron 1979)
 - resample from observed data with replacement
 - this approach is not suitable for type-token distributions (resamples underestimate vocabulary size V!)
- Parametric bootstrapping
 - use fitted model to generate samples, i.e. sample from the population described by the model
 - advantage: "correct" parameter values are known

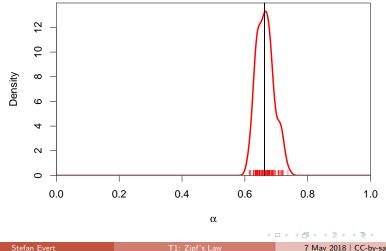
イロト 不得 トイヨト イヨト 二日

Limitations

Bootstrapping

parametric bootstrapping with 100 replicates

Zipfian slope $a = 1/\alpha$



э

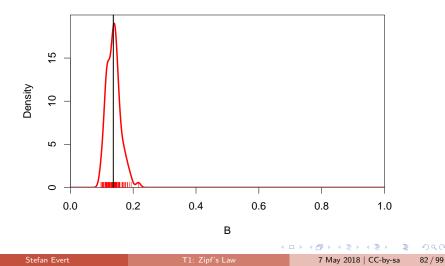
82 / 99

Limitations

Bootstrapping

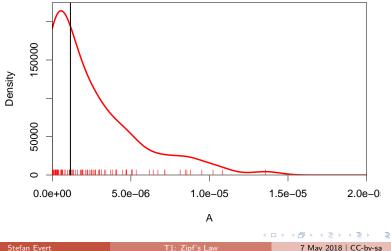
parametric bootstrapping with 100 replicates

Offset $b = (1 - \alpha)/(B \cdot \alpha)$



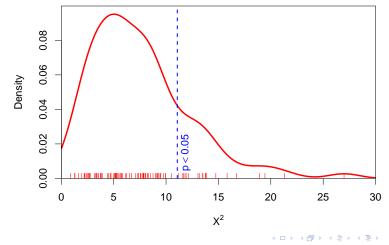
parametric bootstrapping with 100 replicates

fZM probability cutoff $A = \pi_S$



parametric bootstrapping with 100 replicates

Goodness-of-fit statistic X^2 (model not plausible for $X^2 > 11$)

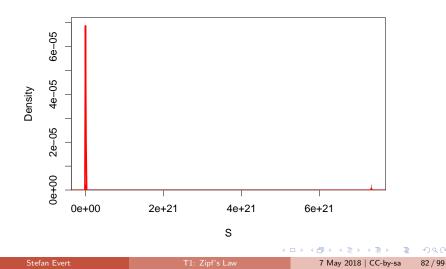


Stefan Evert

7 May 2018 | CC-by-sa 82 / 99

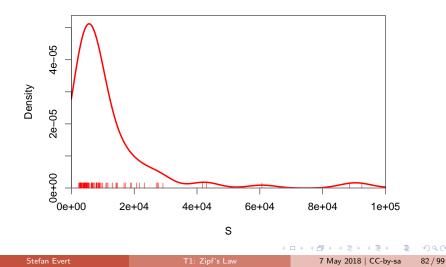
parametric bootstrapping with 100 replicates

Population diversity *S*



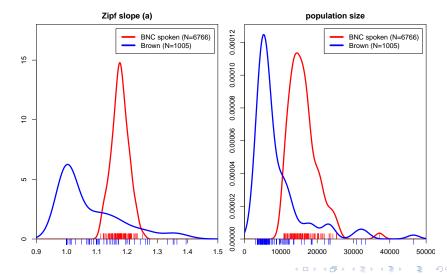
parametric bootstrapping with 100 replicates

Population diversity *S*



Sample size matters!

Brown corpus is too small for reliable LNRE parameter estimation (bare singulars)



Stefan Evert

7 May 2018 | CC-by-sa 83 / 99

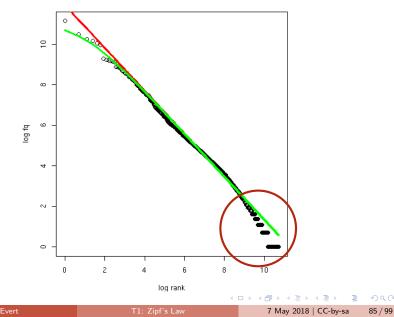
How reliable are the fitted models?

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- 2. Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)

 INT optimization algorithm trapped in local minimum

 INT optimization algorithm trapped in local minimum
- 3. Uncertainty due to sampling variation
 - (i.e. training data differ from population distribution)
 - model fitted to training data, may not reflect true population
 - ${}^{\scriptsize \mbox{\scriptsize \sc only}}$ another training sample would have led to different parameters
 - sepecially critical for small samples (N < 10,000)



Z-M law seems to fit the first few thousand ranks very well, but then slope of empirical ranking becomes much steeper

similar patterns have been found in many different data sets

- Z-M law seems to fit the first few thousand ranks very well, but then slope of empirical ranking becomes much steeper
 - similar patterns have been found in many different data sets
- Various modifications and extensions have been suggested (Sichel 1971; Kornai 1999; Montemurro 2001)
 - mathematics of corresponding LNRE models are often much more complex and numerically challenging
 - may not have closed form for E[V], E[V_m], or for the cumulative type distribution G(ρ) = ∫_ρ[∞] g(π) dπ

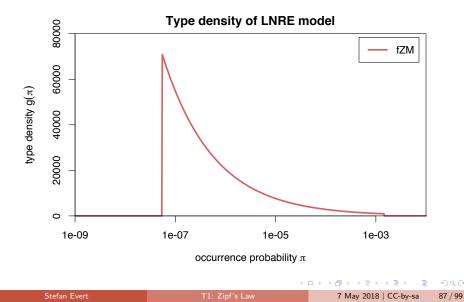
- Z-M law seems to fit the first few thousand ranks very well, but then slope of empirical ranking becomes much steeper
 - similar patterns have been found in many different data sets
- Various modifications and extensions have been suggested (Sichel 1971; Kornai 1999; Montemurro 2001)
 - mathematics of corresponding LNRE models are often much more complex and numerically challenging
 - may not have closed form for E[V], E[V_m], or for the cumulative type distribution G(ρ) = ∫_ρ[∞] g(π) dπ
- E.g. Generalized Inverse Gauss-Poisson (GIGP; Sichel 1971)

$$g(\pi) = rac{(2/bc)^{\gamma+1}}{K_{\gamma+1}(b)} \cdot \pi^{\gamma-1} \cdot e^{-rac{\pi}{c} - rac{b^2c}{4\pi}}$$

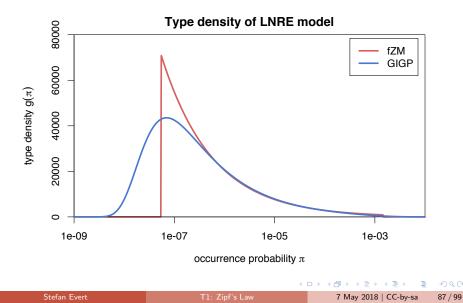
Part 2 L

Limitations

The GIGP model (Sichel 1971)



The GIGP model (Sichel 1971)



Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2

Applications & examples (zipfR) Limitations Non-randomness

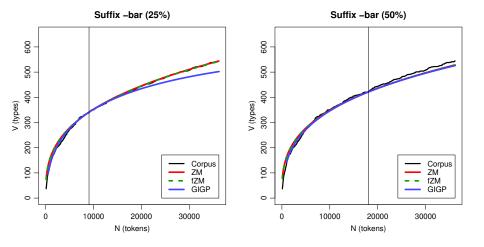
Conclusion & outlook

э

A B b A B b

< 47 ▶

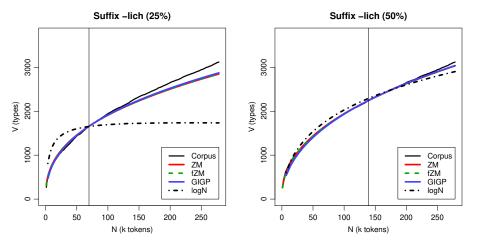
(Baroni and Evert 2005)



7 May 2018 | CC-by-sa

89 / 99

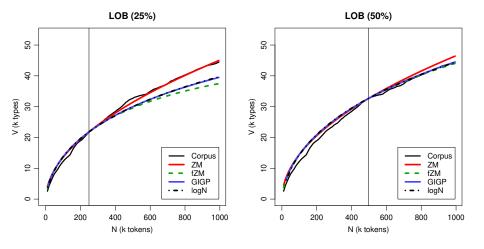
(Baroni and Evert 2005)



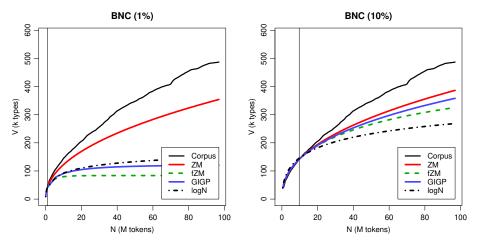
7 May 2018 | CC-by-sa

89 / 99

(Baroni and Evert 2005)



(Baroni and Evert 2005)



7 May 2018 | CC-by-sa

89 / 99

Reasons for poor extrapolation quality

- Major problem: non-randomness of corpus data
 - LNRE modelling assumes that corpus is random sample

Reasons for poor extrapolation quality

- Major problem: non-randomness of corpus data
 - LNRE modelling assumes that corpus is random sample
- Cause 1: repetition within texts
 - most corpora use entire text as unit of sampling
 - also referred to as "term clustering" or "burstiness"
 - well-known in computational linguistics (Church 2000)

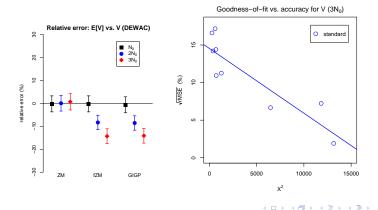
Reasons for poor extrapolation quality

- Major problem: non-randomness of corpus data
 - LNRE modelling assumes that corpus is random sample
- Cause 1: repetition within texts
 - most corpora use entire text as unit of sampling
 - also referred to as "term clustering" or "burstiness"
 - well-known in computational linguistics (Church 2000)
- Cause 2: non-homogeneous corpus
 - cannot extrapolate from spoken BNC to written BNC
 - similar for different genres and domains
 - also within single text, e.g. beginning/end of novel

The ECHO correction

(Baroni and Evert 2007)

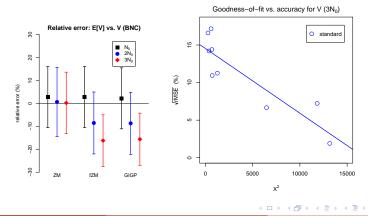
▶ Empirical study: quality of extrapolation $N_0 \rightarrow 4N_0$ starting from random samples of corpus texts



The ECHO correction

(Baroni and Evert 2007)

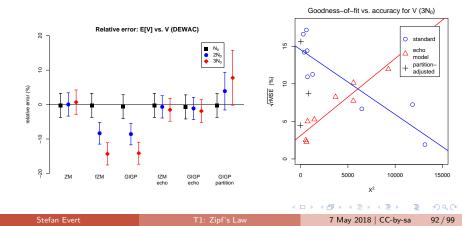
▶ Empirical study: quality of extrapolation $N_0 \rightarrow 4N_0$ starting from random samples of corpus texts



The ECHO correction

(Baroni and Evert 2007)

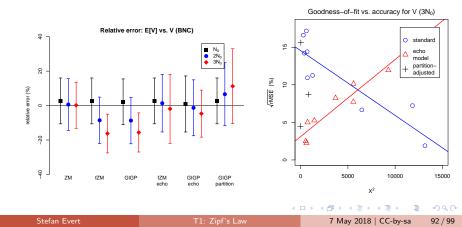
ECHO correction: replace every repetition within same text by special type ECHO (= document frequencies)



The ECHO correction

(Baroni and Evert 2007)

ECHO correction: replace every repetition within same text by special type ECHO (= document frequencies)



Outline

Part 1

Motivation Descriptive statistics & notation Some examples (zipfR) LNRE models: intuition LNRE models: mathematics

Part 2

Applications & examples (zipfR) Limitations Non-randomness Conclusion & outlook

э

A B A A B A

< 1 k

Future plans for zipfR

- More efficient LNRE sampling & parametric bootstrapping
- Improve parameter estimation (minimization algorithm)
- Better computation accuracy by numerical integration
- Extended Zipf-Mandelbrot LNRE model: piecewise power law
- Development of robust and interpretable productivity measures, using LNRE simulations
- Computationally expensive modelling (MCMC) for accurate inference from small samples

Thank you!

æ

<ロト < 四ト < 三ト < 三ト

References I

- Baayen, Harald (1991). A stochastic process for word frequency distributions. In Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics, pages 271–278.
- Baayen, R. Harald (2001). *Word Frequency Distributions*. Kluwer Academic Publishers, Dordrecht.
- Baroni, Marco and Evert, Stefan (2005). Testing the extrapolation quality of word frequency models. In P. Danielsson and M. Wagenmakers (eds.), Proceedings of Corpus Linguistics 2005, volume 1, no. 1 of Proceedings from the Corpus Linguistics Conference Series, Birmingham, UK. ISSN 1747-9398.
- Baroni, Marco and Evert, Stefan (2007). Words and echoes: Assessing and mitigating the non-randomness problem in word frequency distribution modeling. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics*, pages 904–911, Prague, Czech Republic.
- Brainerd, Barron (1982). On the relation between the type-token and species-area problems. *Journal of Applied Probability*, **19**(4), 785–793.
- Cao, Yong; Xiong, Fei; Zhao, Youjie; Sun, Yongke; Yue, Xiaoguang; He, Xin; Wang, Lichao (2017). Pow law in random symbolic sequences. *Digital Scholarship in the Humanities*, **32**(4), 733–738.

イロト イポト イヨト イヨト

References II

- Church, Kenneth W. (2000). Empirical estimates of adaptation: The chance of two Noriegas is closer to p/2 than p^2 . In *Proceedings of COLING 2000*, pages 173–179, Saarbrücken, Germany.
- Efron, Bradley (1979). Bootstrap methods: Another look at the jackknife. *The Annals of Statistics*, **7**(1), 1–26.
- Evert, Stefan (2004). A simple LNRE model for random character sequences. In Proceedings of the 7èmes Journées Internationales d'Analyse Statistique des Données Textuelles (JADT 2004), pages 411–422, Louvain-la-Neuve, Belgium.
- Evert, Stefan and Baroni, Marco (2007). zipfR: Word frequency distributions in R. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions, pages 29–32, Prague, Czech Republic.
- Evert, Stefan and Lüdeling, Anke (2001). Measuring morphological productivity: Is automatic preprocessing sufficient? In P. Rayson, A. Wilson, T. McEnery, A. Hardie, and S. Khoja (eds.), *Proceedings of the Corpus Linguistics 2001 Conference*, pages 167–175, Lancaster. UCREL.
- Grieve, Jack; Carmody, Emily; Clarke, Isobelle; Gideon, Hannah; Heini, Annina; Nini, Andrea; Waibel, Emily (submitted). Attributing the Bixby Letter using n-gram tracing. *Digital Scholarship in the Humanities*. Submitted on May 26, 2017.

< □ > < □ > < □ > < □ > < □ > < □ >

References III

Herdan, Gustav (1964). Quantitative Linguistics. Butterworths, London.

- Kornai, András (1999). Zipf's law outside the middle range. In *Proceedings of the Sixth Meeting on Mathematics of Language*, pages 347–356, University of Central Florida.
- Li, Wentian (1992). Random texts exhibit zipf's-law-like word frequency distribution. *IEEE Transactions on Information Theory*, **38**(6), 1842–1845.
- Mandelbrot, Benoît (1953). An informational theory of the statistical structure of languages. In W. Jackson (ed.), *Communication Theory*, pages 486–502. Butterworth, London.
- Mandelbrot, Benoît (1962). On the theory of word frequencies and on related Markovian models of discourse. In R. Jakobson (ed.), *Structure of Language and its Mathematical Aspects*, pages 190–219. American Mathematical Society, Providence, RI.
- Miller, George A. (1957). Some effects of intermittent silence. *The American Journal* of *Psychology*, **52**, 311–314.
- Montemurro, Marcelo A. (2001). Beyond the Zipf-Mandelbrot law in quantitative linguistics. *Physica A*, **300**, 567–578.
- Rouault, Alain (1978). Lois de Zipf et sources markoviennes. Annales de l'Institut H. Poincaré (B), 14, 169–188.

98 / 99

イロト イボト イヨト イヨト

References IV

- Sichel, H. S. (1971). On a family of discrete distributions particularly suited to represent long-tailed frequency data. In N. F. Laubscher (ed.), *Proceedings of the Third Symposium on Mathematical Statistics*, pages 51–97, Pretoria, South Africa. C.S.I.R.
- Sichel, H. S. (1975). On a distribution law for word frequencies. Journal of the American Statistical Association, 70, 542–547.
- Simon, Herbert A. (1955). On a class of skew distribution functions. *Biometrika*, **47**(3/4), 425–440.
- Tweedie, Fiona J. and Baayen, R. Harald (1998). How variable may a constant be? measures of lexical richness in perspective. *Computers and the Humanities*, **32**, 323–352.
- Yule, G. Udny (1944). *The Statistical Study of Literary Vocabulary*. Cambridge University Press, Cambridge.
- Zipf, George Kingsley (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge, MA.
- Zipf, George Kingsley (1965). *The Psycho-biology of Language*. MIT Press, Cambridge, MA.

< □ > < □ > < □ > < □ > < □ > < □ >