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1 The mathematics of LNRE modelling

1.1 Notation

1.2 Sampling distribution

1.3 LNRE models

1.4 Parameter estimation

1.5 Posterior distribution & Good-Turing

2 Productivity & lexical diversity

2.1 Overview of productivity measures

TTR = V

N
(1)

Guiraud’s R = V√
N

=
√
N · TTR (2)

Carroll’s CTTR = V/
√

2N = R/
√

2 is fully equivalent.

Herdan’s C = log V
logN = logTTR

logN + 1 (3)

Herdan assumes the general power law V ∼ Nα, with C → α for N →∞. The assumption is met
approximately by any infinite Zipf-Mandelbrot population and C → 1/a.

Dugast’s k = log V
log logN = log(N · TTR)

log logN (4)

Dugast’s U = (logN)2

logN − log V = logN
1− C (5)

Maas’s a2 = (logN − log V )/(logN)2 = 1/U is fully equivalent, but formulated as a measure of
“lexical poverty”, i.e. low values indicate high productivity.

Brunet’s W = NV −a

with a = 0.172 (6)

which looks less ridiculous in the form logW = V −a · logN

Summer’s S = log log V
log logN (7)

is not implemented in zipfR because the symbol clashes with Sichel’s S and because it’s taking the
double logs to absurdity.

Baayen (1992) proposes the productivity index

P = V1

N
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(originially from his PhD thesis, Baayen 1989), which corresponds to the slope of the vocabulary
growth curve.

Honoré’s H = 100 logN
1− V1/V

(8)

Sichel’s S = V2

V
(9)

Michéa’s M = V/V2 = 1/S is a measure of lexical poverty and fully equivalent to Sichel’s S.
For an infinite Zipf-Mandelbrot population, the slope parameter α = 1/a can directly be estimated
from the proportions of hapax (Evert 2004: 130) and dis legomena (Evert 2004: 127), which are
independent of sample size under certain simplifying assumptions and large-sample approximations:

Stefan’s α1 = V1

V
and α2 = 1− 2V2

V1

First experiments show that α1 and α2 work well for random samples from a ZM population, but
can be very sensitive to deviations, esp. in the form of a finite population. Of particular interest is
the measure α1, which is simply the proportion of hapaxes (in analogy to S), and which has also
been suggested as an estimator for the Zipf slope parameter by Rouault (1978: 172).
Also note that Sichel’s S can be seen as a combination of the two measures:

S = α1
1− α2

2

Entropy H needs to be distinguished from Honoré’s H:

H = −
∞∑
i=1

fi
N

log2
fi
N

= −
∞∑
m=1

Vm
m

N
log2

m

N
(10)

Maximum value depends on V , viz. H ≤ log2 V . Hence compute normalized entropy (aka evenness
or efficiency)

η = H

log2 V
(11)

with 0 ≤ η ≤ 1. (Or better η−1 as productivity measure?) η may be problematic due to counter-
intuitive scaling with sample size, and a quick Web search suggests that unbiased estimation of H
is really difficult, so we will not pursue H as a productivity measure (but may implement it do
demonstrate problematic issues).
Yule suggested a measure based on statistical moments of the frequency spectrum (which sounds
quite absurd but could possibly be motivated in terms of sampling random types), leading to

Yule’s K = 104

(
− 1
N

+
∞∑
m=1

Vm

(m
N

)2
)

= 104 ·
∑∞
m=1 m

2 · Vm −N
N2 = 104 ·

∞∑
i=1

fi(fi − 1)
N2 (12)

Herdan proposed a very similar measure vm ≈
√
K based on a different mathematical derviation:

Herdan’s vm =

√√√√− 1
V

+
∞∑
i=1

Vi

(
i

N

)2
(13)

Simpson proposed a closely related measure that can be interpreted as an unbiased estimator of
a population coefficient δ =

∑
i π

2
i , i.e. the probability of drawing the same type twice from the

population.

Simpson’s D =
∞∑
m=1

Vm
m

N

m− 1
N − 1 =

∞∑
i=1

fi
N

fi − 1
N − 1 (14)
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For a LNRE population, the coefficient δ corresponds to the second moment of type density func-
tion:

δ =
∫ ∞

0
π2g(π) dπ (15)

Baayen et al. (1996: 124) already note that “[t]he values of both D and K are primarily determined
by the high end of the frequency distribution structure”.

2.2 Expected values and sampling distribution

Linear transformations of V or Vm Expectations and full sampling distributions can directly
be obtained for TTR and other measures that are linear transformations of V or a single spectrum
element Vm. In particular:

E
[
TTR

]
=
E
[
V
]

N
(16)

E
[
R
]

=
E
[
V
]

√
N

(17)

E
[
P
]

=
E
[
V1
]

N
(18)

Nonlinear transformations of V For a nonlinear transformation f(V ), approximate expecta-
tions can be obtained if the distribution of V covers a region in which f is approximately linear.
In this case,

E
[
f(V )

]
≈ f(E

[
V
]
) (19)

As long as f is monotonic, the corresponding equality for the median is always exact. Provided
that V has a symmetric distribution (e.g. by being approximately normal), we obtain

med
[
f(V )

]
= f(med

[
V
]
) ≈ f(E

[
V
]
) (20)

We assume that these conditions are met for all productivity measures of this form, but may want
to check later whether linearity of the transformation is always a plausible assumption.

E
[
C
]

=
logE

[
V
]

logN (21)

E
[
k
]

=
logE

[
V
]

log logN (22)

E
[
U
]

= (logN)2

logN − logE
[
V
] (23)

E
[
logW

]
= E

[
V
]−a · logN with a = 0.172 (24)

W seems to have (only) slightly larger curvature than logW , so both forms are equally viable.

Measures involving ratios of V and Vm For such measures, approximate expectations can
be obtained from normal approximations to V and Vm (which should be very good in the range of
samples where the measures are reasonable) and the fact that the ratio of two independet normal
variables X ∼ N(µ1, σ

2
1), Y ∼ N(µ2, σ

2
2) can itself be approximated by a normal distribution

X

Y
∼ N(µ, σ2) with µ = µ1

µ2
, σ2 = µ2

(
σ2

1
µ2

1
+ σ2

2
µ2

2

)
(25)
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provided that µi/σi � 1 (Díaz-Francés and Rubio 2013: 313). This should also hold for correlated
variablesX and Y with the same µ but different σ2, as demonstrated for the special caseX/(X+Y )
by Evert (2004: Lemma A.8). For nonlinear transformations of such ratios, we assume

E

[
f

(
X

Y

)]
≈ f

(
E

[
X

Y

])
≈ f

(
E
[
X
]

E
[
Y
]) (26)

This yields expectations for:

E
[
S
]

=
E
[
V2
]

E
[
V
] (27)

E
[
α1
]

=
E
[
V1
]

E
[
V
] (28)

E
[
α2
]

= 1− 2
E
[
V2
]

E
[
V1
] (29)

E
[
H
]

= 100 logN
1− E

[
V1
]
/E
[
V
] (30)

Variance and sampling distribution Except in the case of linear transformations of V or
Vm, the full sampling distributions are much harder to compute. Approximate variances could be
determined from normal approximations to V and Vm together with (25) and a linear approximation

f(X) ≈ f(E
[
X
]
) + f ′(E

[
X
]
) · (X − E

[
X
]
)

Variances would have to be worked out in detail and require a version of (25) for correlated variables,
possibly based on the proof by Evert (2004: Lemma A.8).

For the time being, variances and confidence intervals will be determined empirically by parametric
boostrapping.

Measures based on the full frequency spectrum Expectations for Simpson D and Yule
K are derived from the individual binomial distributions of fi ∼ B(N, πi); additivity of expected
values does not required independence of the random variables. Since E

[
fi
]

= Nπi and Var
[
fi
]

=
Nπi(1− πi), we find that

E
[
f2
i

]
= Var

[
f2
i

]
+ E

[
fi
]2 = Nπi(1− πi) + (Nπi)2 (31)

Application to Simpson’s D yields

E
[
D
]

= 1
N(N − 1)

∞∑
i=1

(
E
[
f2
i

]
− E

[
fi
])

= 1
N(N − 1)

∞∑
i=1

(
Nπi(1− πi) + (Nπi)2 −Nπi

)
= 1
N(N − 1)

∞∑
i=1

π2
i (N2 −N) =

∞∑
i=1

π2
i = δ

proving the claim thatD is an unbiased estimator of the population coefficient δ (Simpson 1949: 688).

If we approximate the binomial distributions of fi with Poisson distributions (as in the simplified
Poisson sampling approach to LNRE models), we have E

[
fi
]

= Nπi and E
[
f2
i

]
= Nπi + (Nπi)2.
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Under these assumptions, Yule’s K becomes an unbiased estimator:

E
[
K
]

= 104

N2 ·
∞∑
i=1

(
E
[
f2
i

]
− E

[
fi
])

= 104

N2 ·
∞∑
i=1

N2π2
i = 104 ·

∞∑
i=1

π2
i = 104 · δ

With binomial sampling, the expectation is E
[
K
]

= 104N−1
N δ.

An equation for the variance of D is provided by Simpson (1949: 688) and may be accepted without
further proof, given that his claim about E

[
D
]
was correct.

3 Specific LNRE models

3.1 Zipf-Mandelbrot (ZM)

The second moment δ of the tdf (15) is easily obtained from (33) by setting A = 0 (which also
applies to the normalizing constant C):

δ = C

2− αB
2−α = (1− α)B2−α

(2− α)B1−α (32)

3.2 Finite Zipf-Mandelbrot (fZM)

The second moment δ of the tdf (15) is given by

δ =
∫ ∞

0
π2g(π) dπ = C

∫ B

A

π1−α dπ

= C

[
π2−α

2− α

]B
A

= C

2− α
(
B2−α −A2−α)

= 1− α
2− α ·

B2−α −A2−α

B1−α −A1−α

(33)

3.3 Generalised Zipf-Mandelbrot (gZM)

3.4 Generalised Inverse Gauss-Poisson (GIGP)

3.5 Montemurro / Tsallis

Based on original research by Tsallis, Montemurro (2001) proposes the following type density Insert refer-
ences to Tsallisfunction:

g(π) = C
(
µπR + (λ− µ)πQ

)−1 (34)
with parameters 1 < R < Q and µ, λ ∈ R, normalising constant C and possible restriction to a
suitable region A ≤ π ≤ B. Eq. (34) is derived from a differential equation for the rank-frequency
relationship, which does not have a closed-form rank-frequency solution in the general case. See
Sec. 4.1.1 for motivation and details.
It will be difficult to obtain closed-form solutions for E

[
V
]
, E
[
Vm
]
and other relevant quantities

from Eq. (34), and numerical integration may often be required.
Montemurro’s LNRE model can be thought of as a smooth interpolation between two power laws
with different slopes that hold in different frequency ranges. Therefore, a two-segment gZM model
(Sec. 3.3) or a mixture of two ZM/gZM models (Sec. 3.6) should give an approximation to Eq. (34),
but will be much easier to handle mathematically (closed-form solutions, numerical accuracy).
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3.6 Mixture models

Write up mathematics and purpose of mixture models

4 Literature notes

4.1 Extensions of Zipf’s law

4.1.1 Montemurro (2001)

Montemurro (2001) proposes an extension to Zipf’s law that results in a better empirical fit for
higher ranks (i.e., low-frequency data), while Zipf-Mandelbrot only improves the fit for low ranks.
Based on all-words Zipf rankings for various literary corpora compiled from Gutenberg e-texts, he
observes that the original form of Zipf’s law (with a ≈ 1) only seems to hold for a “middle range” of
frequency ranks, r ≈ 100 . . . 2000/6000 (depending on corpus size). He further claims that higher
ranks follow a similar power law with steeper slope (a ≈ 2 . . . 3).

In the following, notation has been adjusted to zipfR conventions:

• r = Zipf rank (original: s)

• pr = relative frequency of r-th type in Zipf ranking (original: f(s))

• Q,R = Zipf slopes (original: q, r)

Noting that the Zipf-Mandelbrot law can be derived from a differential equation

dp

dr
= −λpQ (35)

(Eq. (3), p. 572), he derives a generalisation from the differential equation

dp

dr
= −λpR − (λ− µ)pQ (36)

(Eq. (4), p. 572). There are closed-form solutions for the special cases R = Q = 1 (Zipf-Mandelbrot)
and R = 1, Q > 1 (Zipf’s law in middle range, steeper slope for higher ranks), but not for the general
case 1 < R < Q (p. 573).

Empirically, a good fit is obtained for literary corpora from single authors, using the closed form
solution with R = 1, Q > 1:

pr =
(

1− λ

µ
+ λ

µ
e(Q−1)µr

)− 1
Q−1

(37)

(Eq. (6), p. 573). For larger, composite corpora, the general form 1 < R < Q seems to be required.

The differential equation (36) and its various closed-form or implicit solutions are attributed to
Constantino Tsallis: Find papers

by Tsallis &
Denisov• Tsallis/Bemski/Mendes (1999), Phys Lett A 257, 93

• Tsallis (1988), J Stat Phys 52, 479 — underlying framework of statistical mechanics

• Montemurro says that Tsallis has suggested application to linguistic data in “private com-
munication”

• Denisov (1997), Phys Lett A 235, 447 — relates Zipf-Mandelbrot law to “fractal structure of
symbolic sequences with long-range correlations” (p. 572)
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Montemurro notes that with some approximations, the general case can be expressed in closed form
as a type density function (which he awkwardly refers to as a “probability density”), resulting in
the LNRE model:

g(π) ∝
(
µπR + (λ− µ)πQ

)−1 (38)

See Sec. 3.5 for more information on this LNRE model.

Montemurro postulates that the two power laws may correspond to “general” and “specialised”
vocabulary without further evidence: “This suggests . . . the vocabularies can be divided into two
parts of distinct nature: one of basic usage . . . , and a second part containing more specific words
with a less flexible syntactic function.” (p. 571, citing then unpublished work by Ferrer & Solé).
If we accept this claim, a linear mixture model (Sec. 3.6) would be much more appropriate than a
hard split at rank r ≈ 2000 . . . 6000.

There is a completely unfounded claim at the end of the paper that “it seems quite plausible
that there may be a deep connection between differential equation (4) and the actual processes
underlying the generation of syntactic language.” (p. 577).

5 Notes and ideas

5.1 Mathematics and implementation

• LNRE model fit may be affected by a small number of very high-frequency types, esp. “echo”
tokens (Baroni and Evert 2007) or the “other” type when modelling vocabulary growth
wrt. all tokens (external productivity). It would probably be useful to separate the most
frequent types, estimate their occurrence probabilities directly (MLE are reliable barring
non-randomness effects), and apply the LNRE model only to the remaining vocabulary. This
should present no major mathematical obstacles, but will have to be taken into account
throughout the implementation (expectations, variances, chi-squared statistics, etc.).

• Standard LNRE fitting uses only the low end of the frequency spectrum and may produce
an unsatisfactory fit for the “middle range” of the Zipf ranking. If we want to account for
these data as well – esp. in connection with mixture models (Sec. 3.6) and gZM (Sec. 3.3) –
a different goodness-of-fit goal function will be needed for parameter estimation.
One possibility is to pool multiple frequency classes together, e.g. on a logarithmic scale:
m = 1, . . . , 10, m = 11 . . . 14, m = 15 . . . 20, m = 21 . . . 50, m = 51 . . . 100, m = 101 . . . 1000,
etc.; granularity will have to be adjusted to the available data, of course. Assuming the
usual multivariate Gaussian joint distriubtion for the original frequency spectrum, the pooled
frequency spectrum should also be multivariate Gaussian as a linear map of the original
spectrum. Expectations, variances and covariances should be straightforward, although care
has to be taken to avoid performance and/or numerical accuracy issues. Are there sim-

plified equa-
tions for ex-
pectations and
(co)variances
of a pooled
frequency spec-
trum?

• Sometimes it would be useful to fit a LNRE model to multiple frequency spectra. E.g. for
Gordon Pipa’s neural spiking data, where it is plausible that trials for the same condition
follow the same Zipfian distribution, but data cannot be pooled directly; or to avoid overfitting
of non-random data by parallel parameter estimation from frequency spectra at different
sample sizes. Such co-estimation should be relatively straightforward to implement by adding

Is “co-
estimation”
an appropriate
term?

up cost functions (perhaps with suitable scaling to account for different sample sizes), but
custom estimators available for some of the models can no longer be used.

• One problem of the fZM implementation may be numerical accuracy due to cancellation when
“short” Gamma integrals are calculated as differences between incomplete Gamma functions,
esp. on very small or otherwise extreme samples. This will become much more virulent for
gZM models with many components. Suggest a two-step strategy:
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1. Encapsulate finite Gamma integrals into a helper function, which estimates cancellation
errors and collects statistics. This should be controlled by a global debug option for
zipfR (set with zipfR.par()).

2. Implement more accurate algorithm for finite Gamma integrals. So far, the only solution
seems to be numeric integration, which is easy and accurate for monotonic functions
(possibly splitting integrand into monotonic parts). Code might be implemented in R
(using standard numeric integration functions) for preliminary testing.

3. Reimplement numeric integration in C; for better efficiency and accuracy on “long”
Gamma integrals, might compute incomplete Gamma function first and run numeric
integration only when estimated cancellation error exceeds a pre-defined threshold (also
set with zipfR.par()).

5.2 Thoughts on goals and applications of LNRE modelling

• Most research on Zipf’s law (both Zipf himself and more recent work by physicists) focuses on
middle-range frequency ranks, which are highlighted in a logarithmic rank-frequency graph.
By contrast, LNRE models (Khmaladze 1987; Baayen 2001) based on truncated frequency
spectra are only interested in the lowest-frequency types. Note that for typical applications
– productivity, vocabulary growth, estimation of vocabulary diversity, adjusted significance
tests – only such lowest-frequency types are of major concern, as probability estimates for
middle- and high-frequency data can be obtained directly from any sizable corpus. This is
explains why most LNRE models find Zipf slows a � 1 rather than a ≈ 1 as observed by
Zipf and related work.
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